
NATIONAL
~RESOURCE

FOR COMPUTATION
INCHE ISTRY

ATTACHED SCIENTIFIC PROCESSORS FOR CHEMICAL COMPUTATIONS:
A REPORT TO THE CHEMISTRY COMMUNITY

LBL-10409
UC-32

Neil S. Ostlund
L/\ VJf~E}J(:E

l3F.F.?l\EL_EY L.!\E~()f~,ll.·rr1t:?Y

January 1980 LiEH<AF;"·{ J\NL.
:::>EC.liUr·

TWO-WEEK LOAN COPY

This is a Library Circulating Copy

which may be borrowed two weeks.

For a personal copy; call

Info. Division)> Ext. 6782.

Prepared for the U.S. Department of Energy under Contract W-7405-ENG-48 and fnr the National
Science Foundation under Interagency Agreement CHE-7721305

DISCLAIMER

This document was prepared as an account of work sponsored by the United States
Government. While this document is believed to contain conect information, neither the
United States Government nor any agency thereof, nor the Regents of the University of
California, nor any of their employees, makes any wananty, express or implied, or
assumes any legal responsibility for the accuracy, completeness, or usefulness of any
information, apparatus, product, or process disclosed, or represents that its use would not
infringe privately owned rights. Reference herein to any specific commercial product,
process, or service by its trade name, trademark, manufacturer, or otherwise, does not
necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government or any agency thereof, or the Regents of the University of
California. The views and opinions of authors expressed herein do not necessarily state or
reflect those of the United States Government or any agency thereof or the Regents of the
University of California.

National Resource for Computation ~n Chemistry

Attached Scientific Processors
for Chemical Computations:

A Report
to the

Chemistry Community

Neil S. Ostlund
Department of Chemistry
University of Arkansas
Fayetteville, AR 72701

INDEX

1.0 Purpose and Scope of the Report •••• , •• , •• , • 1

2.0 Advancing Hardware Technology ••••••••••••• 2

3.0 Array Processor Fundamentals , ••••••••••. , • 7

4.0

3.1 Microcoding •••••••••••••.•••••• 8

3.2 Floating Point Hardware •••••••••••••• 13

3.3 Pipe lining 0 €1 G 0 0 e G G 14

3.4 Synchonous and Asynchronous Devices •••••••• 15

3.5 Transfer of Data To and From a Host •••••••• 17

Current Commercial Products o e & o o G o e e o o 18

4.1 Floating Point Systems, Inc. • ••.••••••• 20

4 (!.1 2 c SP' Inc 0 G 0 0 e e {I e e 0 0 0 0 {I 0 G 0 0 Q 0 e G 2 9

4.3 Datawest Corporation •••••••••• , •••• 31

4.4 Other Products •••••••••••••••••• 32

5.0 User's Experience ••••••••••••••••••• 32

6.0

7.0

8.0

Discussion • • • •

Array Processor Literature •

Role of the NRCC in Chemical Array Processing

0 0 0 0 6 41

42

9. 0 Recommendations • • • • • • • • • • . • • • • • • • . • 43

Acknowledgements

References

46

Appendix e 0 0 0 e 0 €1 9 0 0 0 Q e G Q 0 G 0 G a (I 0 9 0 50

(iii)

1.0 Purpose and Scope of this Report

The demands of chemists for comrutational resources is well
known and has been amply documented • Tne best and most
cost~effective means of providing these resources is still open to
discussion, however. This report, sponsored by the National
Resource for Computation in Chemistry (NRCC), surveys the field of
attached scientific processors ("array processors") and attempts to
indicate their present and possible future use in computational
chemistry. Array processors, for example, the AP~l20B produced by
Floating Point Systems, Inc., have the possibility of providing very
cost~effective computation. Definitive information concerning array
processors has not, however, been generally available to
computational chemists, nor has there been a general appreciation
within the community of the good and bad characteristics of this
mode of computation. This report attempts to provide information
which will assist chemists who might be considering the use of an
array processor for their computations. It describes the general
ideas and concepts involved in using array processors, the
commercial products that are available, and the experiences reported
by those currently using them. In surveying the field of array
processors, the author makes certain recommendations regarding their
use in computational chemistry and recommends ways in which NRCC
might play a role in advancing this use. The opinions expressed,
however, are solely those of the author and in no way reflect NRCC
policy.

In conjunction with this study a small 1~1/2 day meeting, "Array
Processors for Chemical Computations," was held at the NRCC on July
20~21, 1979. In addition to myself, the NRCC staff, and a small
number of interested individuals in the local area, six people with
expertise in the area were invited to describe their experience with
array processors and to relay to those in attendence their
impression of the current and future status of array processors for
chemical computations. This report abstracts many of the points
brought forward in that meeting. The author acknowledges, if not
explicitly, the assistance of those in attendance and many others
who have contributed information about array processors. In the
final analysis, however, the opinions expressed are those of the
author and apologies are made to any group or individual
misrepresented.

Section 2 gives some background on the advancing state of
hardware technology and parallelism in architectures. Section 3
describes some of the general concepts relevant to understanding how
most array processors function. Section 4 explicitly describes a
few of the available commercial products ~ those most relevant to
computational chemistry. Section 5 describes the experience of
scientists using an array processor for applications directly
related to those of computational chemistry. Section 6 includes a
general discussion on the applicability of array processors to
chemical problems. Section 7 reviews the available literature on

(1)

array processors. Section 8 introduces possible roles the NRCC
might play in advancing the state of chemical computation via array
processing. Finally, Section 9 presents the conclusions and
recommendations of this report.

2.0 Advancing Hardware Technology

Computers are built from registers, adders, multiplexers,
decoders, etc., which in turn are built from logic gates (NOT, AND,
OR, etc.), which are in turn built from transistors on the surface
of a silicon chip2. The level of integration, i.e., the
complexity of circuitry placed on a single chip, has been increasing
dramatically and will continue to do so. Developments in the
semiconductor industry will have a profound influence on every
aspect of science and technology. In view of the reliance of
computational chemistry on computers, it is important that
computational chemists be aware of these advances in order to take
best advantage of current and future developments in
microelectronics and associated computer hardware.

Integrated circuits can be characterized by their density
(number of gates per unit area) and by their logic family (the type
of transistor used and the method of interconnecting transistors).
The three most significant technologies (logic families), in order
of increasing density but decreasing speed, are ECL (emitter-coupled
logic), TTL (transistor-transistor logic), and N-MOS (N-channel
metal oxide semiconductor). Each of the three technologies is
characterized by a switching speed3: the delay in the output of a
single logic gate subsequent to a change in its input. A rough
estimate of the switching speeds of ECL, TTL and N-MOS is 1, 5 and
50 nanoseconds, respectively. Gates connected in a serial fashion,
of course, accumulate this delay. Most current computers use TTL
logic, very high speed circuits use ECL, and microprocessor chips
use N-MOS technology.

The densities of integrated circuits vary from a few tens of
transistors per chip (SSI, small-scale integration) to tens of
thousands of transistors per chip (VLSI, very-large-scale
integration). The level of integration available varies in the
order N-MOS) TTL) ECL. While the densities of each of the three
technologies is increasing, the most dramatic increases have been
with N-MOS and it is now possible, using this technology, to place
complete central processing units (CPU's) on a single chip. An
announced product, the 68000 microprocessor from Motorola4, will
have of the order of 90,000 transistors on a single chip. Current
N-MOS memory chips have 64K (K=l024) bits of memory. The number of
transistors in these chips is perhaps only an order of magnitude
less than that in many large mainframe CPU's. In the next decade
these densities can be expected to increase by perhaps two orders of
magnitudeS. Thus, in spite of expected advances in chemical
theory (and experiment) and advances in computational methods,

(2)

algorithms, and efficient application programs, it is possible that
the most significant development determining the course of
computational chemistry in the next 10 years will be the continuing
revolution in microelectronics.

Independent of the level of integration, the production cost of
a single chip is, at most, a few dollars. If tb.e large development
cost can be paid off by a mass market, relatively sophisticated
computing power will be available to scientists at a cost compatible
with the budget of an individual researcher. It seems clear that a
desktop computer with the processing power of, for example, an IBM
370/145 will be available for $10,000 in the not too distant
future. As hardware costs continue to drop, the personal computer
will proliferate.

While densities will continue to e, the speed of logic
c ts can not be expected to improve in a similarly dramatic
way. Some improvement can be expected in N-MOS and there already
exist memory ch with access times under 50 nanoseconds. The
Josephson junction6 offers some hope of obtaining switching speeds
in the picosecond range but these require liquid Helium temperatures
and computers formed from them are a considerable distance down the
road. In searching for larger and larger processing power, effort
appears to be best placed greater and greater degrees of
parallelism. The usual serial computer will become cheaper and
cheaper but it cannot be expected to become significantly faster.
While a not insignificant amount of computing power will be widely
distributed to individual chemists in the near future, a search
should, and surely will, continue for cost-effective ways of solving
larger and larger computational problems. The computations that
chemists would like to perform are essentially infinite. Quantum
chemists, as an example, will always seek more and more accurate
calculations on larger and larger systems. While proliferation of
today's serial computer will result in solutions to most of the
problems now being tackled, only new parallel architectures will
enable chemists to expand their horizon and seek solutions to
problems previously considered intractable.

The future of high performance computers is in parallel
computation. This is not necessarily a recent concept; the
simultaneous processing of all bits in a computer word is one form
of lel processing, as is the simultaneous execution of an
instruction and the fetch from memory of a subsequent one (IBM
7094.). Current machines like the CDC 7600 and Cray~l require a
significant of parallelism in their architecture in order to
achieve the high performance. With dropping hardware costs, the
options available to designers seeking high performance is very
large. Perhaps in the distant future, one parallel architecture
will dominate; the meantime, there is likely to be large
differences in "supercomputers 11

, as one moves away from the simple
Von Neumann serial machine. Present architectures largely hide any
degree of lelism from the user. Unlike these past improvements
in computer hardware, which conferred increased speed without

(3)

requLrlng major changes in programming practice, it is not clear
that the full benefits of parallel processing can be realized
without drastic changes in operating systems, programming languages,
algorithms, and the very way we approach a computation7.

In spite of the multiplicity of parallel architectures that can
and have been envisioned, it is probably still useful to classify8
parallel machines according to parallelism in the instruction stream
or data stream. The usual serial computer can be thought of as a
control unit sequencing a processing unit (arthmetic and logic unit,
ALU). The control unit interprets a stream of instructions and
directs the ALU to process a stream of data. The combination of a
control unit and processing unit is the CPU. Machines of this
simple type may be referred to as single instruction stream, single
data stream (SISD) computers. In this context, the most general
architecture is that of the multiple instruction stream, multiple
data stream (MIMD) computer. With this architecture one has, in
essence, individual computers, or at least individual CPU's, which
communicate with each other and (hopefully) cooperate in the
solution of a single task. If the computers are loosely coupled and
communicate by a relatively low speed serial line, the architecture
is termed a network. The effective use of a network for the
solution of a single task requires a task which can be broken into
sub~tasks (processes) which are nearly disjoint and communicate very
infrequently with each other. To date, networks have not been used
to solve large computational problems, but normally are used to
transfer data, messages, mail, etc.

If the processors of a MIMD computer are tightly coupled and
communicate via a high speed common memory, the architecture Ls
referred to as a multiprocessor. The use of auxiliary I/0
processors is one example of a multiprocessor. C.mmp9
multiprocessor in the computer science department of Carnegie~Mellon
University has 16 memory units connected to 16 PDP-ll's by a
crosspoint switching device, such that any processor can access any
memory unit. Communication of data, messages, etc., between
processors occurs via their common memory. Although dual processors
and multiprocessors with a small (~ 3-4) degree of parallelism
(apart from I/0 processors) are available commercially, no
multiprocessors with a large number of processors, suitable for
large-scale scientific computation, have yet appeared. The driving
force behind multiprocessor architectures is the potential
cost-effectiveness of connecting hundreds or even thousands of
inexpensive microprocessors. This is an active area of research, as
exemplified by Cm* (50 LSI-11 microcomputers in parallel, again, in
the computer science department of Carnegie-Mellon University9),
but commercial MIMD architectures, applicable to large scientific
calculations, are still a way off. The prospect of using
multiprocessors for the computations of chemistry has recently been
discussed by the author9. If, as many computer scientists
foresee, this Ls the ultimate parallel architecture, huge
reinvestments in algorithms and software will be required. Serial

(4)

FORTRAN and present computational methods are simply not adequate
for efficient multiprocessing.

At a lower level of parallelism are single instruction stream,
multiple data stream (SIMD) computers. The canonical example is
ILLIAC rvlO. This machine has a single control unit which
broadcasts decoded instructions to 64 processing units (ALU's).
Each processing unit has a small amount of local memory which holds
data and each processor executes exactly the same instruction,
although on different data. By a mask, it is possible, however, for
any processor to idle rather than actually execute an instruction.
As opposed to the 11array processors" which are the subject of this
report, ILLIAC IV is a true array processor and its 64 processing
units are arranged as an 8x8 array. Its architecture is best suited
to calculations which manipulate arrays of data. For code such as

10
DO 10
C(I)=

1"' 1,64
A(I) + B(I)

each of the processing units can operate simultaneously on its own
component of the data, since the same instruction can be executed by
each. If, however, the code includes branching, such as the
following two~way branch,

DO 20 I= 1,64
IF (A(I).LT.O) GO TO 10
B(I) = 1.0
GO TO 20

10 B(I) "' 0.0
20 CONTINUE

then, since each processing unit must either be idle or execute the
common instruction, the parallelism is reduced to 32 as illustrated
by Figure 1. With inherently serial code or multi-way branching,
the speed of ILLIAC IV can be slowed down to that of a single
processing unit. A SIMD architecture thus achieves high throughput
only for well-structured problems which manipulate arrays of data,
with very few control statements (GO TO, computed GO TO, and IF
statements). The multiplication or diagonalization of large arrays
are examples of problems which a SIMD machine could be expected to
execute efficiently.

The remaining machines which we wish to discuss are not arrays
of processors like ILLIAC IV but, perhaps, processors of arrays.
That is, like ILLIAC IV, they perform best for problems involving
the manipulation of well~structured arrays of data. Current
examples are the Cray-111 and the attached scientific processors
("array processors") which are the subject of this report. Although
no complete generalization is possible, they do not normally perform
to their limit for other than long vector operations. In addition
to its scalar instructions, the Cray-1 has vector instructions such
that VMULT, for example, can initiate the multiplication ai* bi

(5)

Figure 1.

F T

IDLE 8(1) = 0.0

F T

8(1) = 1.0 IDLE

XBL 801-20

Two~way branching with ILLIAC IV. A common instruction is
broadcast to each of 64 processing units and each processing
unit must either execute the instruction or rema idle.
Processing units which have A(I) negative for their value
of I (in local memory) must idle for the bottom assignment
instruction, while those which have A(J) positive must
idle for the top assignment instruction. All processing
units must execute both IF statements.

(6)

of up to 64 pairs of elements (i~l,2, •.• 64) from the vectors~ and
£· The Cray~l is a vector machine. The array processors of this
report attach to a host minicomputer or mainframe. They normally
are used such that, on instructions from the host, a subroutine
inside the array processor executes a vector or matrix operation on
data transferred from the host to the array processor. The reason
why the Cray~l and array processors execute most efficiently with
vector operations is usually associated with pipelines for floating
point thmetic. Pipelines will be described in the next section.
The basic idea is that, like an assembly line, discrete operations
are performed, at each segment of the pipeline, on data moving
through the pipeline. A new result (a floating point multiply, for
example) can emerge from the pipeline in the execution time of a
segment, but only if the pipeline is kept full. Performing vector
operations on long vectors allows a pipeline to remain fulL

The Cray~l and other array processors are very different from
ILLIAC IV. Nevertheless, since, at least on the programming level,
they execute a single instruction which manipulates vectors
(multiple data), they are sometimes classified with true SIMD
machines. At a certain progranuning level they have only a single
serial instruction stream, quite unlike multiprocessors. It is thus
possible to generate FORTRAN compilers for them, and they perhaps
provide the least perturbation to serial computation.

3.0 Array Processor Fundamentals

Although we believe it is sometimes useful to attempt to
classify computer architectures, as we have done in the last
section, every architecture has its own unique characteristics. It
is thus not possible to give a uniform and simple definition of what
have come to be known as array processors, and later it will be
necessary to give reasonably detailed descriptions of individual
products. A number of products, however, have certain
characteristics in common and in this section we give a pedagogical
description of some of the major architectural features.

The origin of array processors is in signal processing, such as
that involved in radar detection of aircraft, speech and image
processing, and geological exploration. In these applications, one
generally requires a dedicated computer capable of processing large
amounts of data obtained from analog to digital conversion of
"signals". The most common operation required is the fast Fourier
transform (FFT). These•signal processing applications require
extensive arithmetical operations above and beyond the capabilities
of the usual dedicated minicomputer. These applications do not
require precision, and in some cases not even floating point

thmetic, but they do require very fast multiplication and
addition. In response to this need, there arose relatively
inexpensive signal processing "boxes" which could be added on to a
minicomputer, communicating with their host as a peripheral device.

(7)

The host provided the general capability of any m~n~computer, but
the computationally intensive operations could be performed in the
attached signal processor, by passing data to it and subsequently
collecting results from it.

Almost as if by accident, at least one of these add~on boxes,
that produced by Floating Point Systems, Inc., has proven to be a
powerful scientific "number cruncher" Thus arose the attached
scientific processor with the unfortunate name "array processor 11

•

The general characteristics of an array processor are that it is
capable of high performance arithmetic operations, attaches to an
existing computer, and is most effective when performing operations
on long arrays of data passed to it by its host. In addition, it is
assumed to be relatively inexpensive. As with every rule there are
exceptions. The host can be a minicomputer (usually) or a mainframe
computer (sometimes). The 8 million dollar Cray-1 could be called
an attached scientific processor since it also requires a host,
commonly a CDC 7600. In at least one case, the Eclipse S/130 AP,
the array processor is integrated with its host and not attached at
all. The integral array processor would appear to be a likely
prospect for the future. Unfortunately, if they include floating
point operations, most current array processors use only a 32-bit
floating point word. These 6 decimal digits are not sufficient for
many of the calculations of computational chemistry. The major
considerations in choosing an array processor are the precision of
its floating point operations, its inherent speed for the type of
operations that will be performed, the size of program and data
memory that are available, the speed at \vhich data can be
transferred to and from the host (including all overhead), the ease
of programming and the software (operating systems, compilers,
assemblers, math library, etc.) available, the availablity of an
interface to particular hosts, the availability and support of
peripherals, for example, disks, that might be attached directly to
the array processor, and of course, the cost.

3.1 Microcoding

A number of array processors can, or even must, be microcoded by
the user. Since this concept is not generally familiar to chemists,
a brief discussion of the concepts involved is given here. A quite
readable introduction to microprogramming is available in references
12 and 13. The usual serial machine is shown in Figure 2. Storage
in this case includes main memory as well as internal registers.
The solid lines are data buses (data paths) for the movement of
data. The dotted lines are control buses (control lines) for
controlling read and write of storage, the operation of the
arithmetic and logic unit, etc. A bus is simply one or more w~res
used to pass electrical information (voltages), The ALU performs
addition, subtraction, logical operations, shifting, etc. In a
hard-wired control unit, such as that of the CDC 6600, a machine

(8)

Figure 2.

"' d
ft

Storage

t
I

'!!' I
I

Control
unit

I I

I I
I I

if I I ,,
I I

...... L=~
Arithmetic

1/0 and logic
unit

(ALU}

XBL 801 - 23

Functional organization of a digital computer. The control
lines (dotted lines) from the control unit determine the
operation of the other three units. Data passes along the
data paths (solid lines).

(9)

instruction is read from the main memory into the instruction
register of the control unit where the opcode (ADD, LOAD, etc.) is
decoded, causing certain control lines to become active, such that
the instruction is executed. Such hard-wired control units, while
fast, are rather complex.

The IBM 370 and most new machines do not have hard~wired control
units but instead have microprogramrned control units, although the
user is not normally aware of the difference. In hard-wired control
units the machine instructions (load register from memory, add
memory location to register, etc.) are interpreted by the hardware.
In a microprogrammed computer, on the other hand, these machine
instructions are interpreted by a microprogram of
microinstructions. The microinstructions are in turn interpreted by
the hardware. Since microinstructions have a closer relation to the
ultimate hardware of gates, buses, etc. than machine instructions,
microcode is sometimes termed firmware, particularily, if it can not
be easily changed. Thus a machine instruction (software) is
interpreted by microcode (firmware) which in turn is interpreted by
hardware.

Machine instructions can be called macroinstructions. Just as
macroprogramming normally uses an assembler to translate symbolic
code into binary machine instructions, a microassembler can be used
to translate symbolic microinstructions into binary microcode.
Microprogramming requires a relatively detailed knowledge of a
computer's hardware structure and is more tedious than
macroprogramming, just as normal assembly language programming tends
to be tedious relative to programming in a high level language like
FORTRAN. The microcode which interprets machine instructions is
stored in a fast memory called the control store, which is normally
a part of the control unit rather than main memory. In most
machines the control store is ROM (read only memory) which is
one-time programmed by the manufacturer to interpret his particular
machine's instructions. The user of such a machine is generally
unaware of the underlying microcode since he cannot change it nor
have access to it. Other machines, ho~;vever, have part or all of
their microcode in RAM (random access or read/write memory) That
is, these machines have writable control store. These machines thus
allow the user to implement his own machine instructions. There
appears to be a trend among manufacturers to allow a certain amount
of user control store for implementing machine instructions beyond
the standard set.

Figure 3 shows the general organization of a microprogrammable
machine. It includes main memory, 16 general purpose registers
(RO, ••• Rl5), an ALU and a shifter, as well as a status register
flagging the result (zero or negative, for example) of arithmetic
and logical operations. The lower left hand corner constitutes the
control unit.

Accesses to main memory occur by moving an address into the
memory address register (MAR), loading the memory data register MDR
(for a write), executing the READ or WRITE command, and then loading

(10)

Main
memory

Control store
data register
CSDR

Memory
data
register
MDR

Register file
16

registers
Shifter Status

register

Figure 3o Organization of a simple microprogrammable machine

(ll)

Arithmetic
and logic
unit
ALU

XBL 801-21

one of the general purpose registers from the MDR (for a read).
Assuming the appropriate address in RO, the three
microinstructions required to read a memory location into a register
Rl are:

MAR-RO
READ
Rl ._ MDR

In addition to the READ and WRITE microinstructions and the
microinstructions which transfer the contents of one register to
another, there will be microinstructions which perform operations on
contents of the 16 general purpose registers (GPR's). For a simple
micromachine these could include

For example,

GPR ~ shifted GPR
GPR- unary operation GPR
GPR~ GPR binary operation GPR

R3- Rl + R2

There will also be microinstructions which load a GPR with a literal
v a 1 ue (e.g. 3) •

The control unit includes the control store holding the
microinstructions, the microinstruction counter (MIC) which holds
the address in control store of the current microinstruction, and
the microinstruction register (MIR) which holds the current
microinstruction as it is decoded by the hardware. The MtC is
analogous to the usual program counter (PC) of a macromachine, For
normal sequential execution it needs to be incremented by 1 for each
microinstruction executed. For jumps or branches it may be loaded
from a field of the current instruction (MIR) or from a GPR. In
addition, there may be a stack for pushing and popping the MIC upon
calling and returning from a microsubroutine. The control store
data register (CSDR) is used for loading microcode. In addition to
the microinstructions already discussed, there must be instructions
which manipulate the microinstruction counter, including conditional
(depending on the bits in the status register) and unconditional
branch instructions,

The fetch and execution of a machine instruction normally occurs
by loading the macroprogram counter (PC), which is usually kept 1n
one of the GPR's, into the MAR, executing the READ instructions and
then loading the macroinstruction from the MDR into one of the
GPR's. The opcode of the macroinstruction can be extracted by
shifting and/or masking. The opcode, or some transformed version of

(12)

it, then provides an address into control store for the microroutine
which actually executes the macroinstruction. The operands or the
addresses will normally have been previously extracted from the
macroinstruction and placed in GPR's. Tbis constitutes a very
limited description of micromachines but, hopefully, it illustrates
the general concept. Like macroprogramming, each microoperation
could be executed sequentially. This is termed vertical
microprogramming. As Figure 3 illustrates, however, there are
usually a number of independent buses in a micromachine and it is
possible to have different microoperations occuring in parallel. If
different registers in the general purpose register file can be
accessed simultaneously, as is a common situation, then the
following microoperations, as an example, might all occur in parallel

RO- MDR; R2- Rl + R2; R3-. R3f2; CSAR- R4

where R3f2 indicates R3 shifted to the left by 2. Thus, one could
be completing a memory read, adding two registers, shifting a
register, and executing a jump in a single instruction. This is
called horizontal microprogramming. The individual microoperations
(RO- MDR, etc.) would occupy fields of a single "wide"
microinstruction. Thus, by having an architecture with multiple
data paths and independent functional units, such as the shifter and
ALU of our example, it is possible to incorporate a reasonable
degree of parallelism (and hence speed) at the micromachine level.
Parallelism such as this is used in array processors, for example
the one produced by Floating Point Systems, Inc. It might be
pointed out that an alternative definition of vertical and
horizontal that is in common use describes horizontal
microinstructions as those which need not be decoded s~nce
individual bits determine specific microoperations.

3.2 Floating Point Hardware

By an appropriate combination of logic gates, it is reasonably
easy to produce a circuit which is capable of adding or subtracting
binary integers. Thus, most ALU's that are available as single
chips or that are used in many micro~ and mini-computers, are
capable only of adding or subtracting integers. In some machines,
integer multiplication must be implemented by software.
Multiplication occurs by repeated addition and shifting much as one
would multiply on paper, except in binary format. This is obviously
slow, perhaps milliseconds for a floating point multiplication.
Other machines implement these operations in microcode. If N-MO.S is
used this is still very slow. A new single chip floating point unit
from Advanced Micro Devices, the AMD 9512, requires 99 microseconds
for a 32~bit floating point multiplication and 874 microseconds for
a 64-bit floating point multiplication. If a microprogrammed,
multiple chip TTL processor is used for floating point operations,

(13)

these times are much better but still slow for high performance
scientific computation. To achieve high performance in floating
point operations, it is necessary to have special purpose rather
complex hardware floating point units built from SSI and M~I (medium
scale integration) TTL, or possibly ECL, chips. Array processors
provide these high performance floating point units, not generally
available in minicomputers. Most minicomputer vendors offer a
floating point accelerator, floating point unit, etc. as an option
but these do not yet match in performance those available in array
processors.

3.3 Pipelining

Floating point operations, even when accomplished in fast
hardware, are time consuming. To speed them up further, a number of
array processors and most other high performance machines, such as
the Texas Instrument Advanced Scientific Computer (ASC) and the
Cray~l, pipeline these operations. To illustrate this concept we
will use the operation of floating point addition. A floating point
number includes a mantissa (fraction) and an exponent. Although
some computers use base 16, most use base 2 and we will use as an
example of a floating point word, one bit for the sign of the number
(O for positive, 1 for negative), 3 bits for the exponent or power
of 2, and 4 bits for the binary fraction. Thus, the word 00101011
represents +2010 X 0.1011. This, equivalently, is z2 X (2-1 +
z-3 + 2~4) = 4 X (1/2 +1/8 + 1/16) = 2.750 decimal. Suppose now
that we wish to add this number to 0.875 decimal = 00001110
+zOOO x 0.1110. At least four distinct steps, which must be
executed sequentially, are required for this addition:

1. The smaller of the two exponents must be subtracted from the
larger exponent:

010 ~ ooo = 010 = 210
2. The mantissa of the smaller number must be shifted to the
right by the number of places given by the previous subtraction:

0.11100000 0.00111000
3. The new mantissa and the mantissa of the larger number must
be added:

0.10110000
0.00111000
0.11101000

4. The final mantissa must be normalized and then rounded (or
truncated) to 4 bits. The final exponent is that of the larger
original number:

czo1o x o.l011) + c2ooo x 0.111o) ~ 2010 x 0.1111

2.750 + 0.875 3.75

(14)

The finite precision (4 bits) gives an answer 3.75, which is
different from the exact result of 3.625. The original numbers were
normalized, i.e., the exponents were chosen so that the leading
digit in the mant sa was a l, In general, step 4 of the above
should also include any required normal ation of the result prior
to round (or truncat), although in this example the result 1s
already normalized.

As can be seen from the example, these steps need to be
performed s ial and the total time taken for the floating
point addition will be (assuming each of the steps takes
approximate the same time) four times that for an individual
step. This may be too long for some requirements. Assuming that
there are many numbers that we want to add, one way to speed up the
addition is to form a segmented pipeline. In our case, the pipeline
will have 4 s, corresponding to each of the four operations
described above, as shown in Figure 4. If we want to add the
numbers a + bi, i"' 1, 2, •• ,, we first let a1 and b1 enter
the pipel at segment 1. Most computer's operations are clocked
by a pulse train of a certain frequency. We can assume that the
operations of each segment require one clock cycle. At the end of
the first clock cycle, the exponents of a1 and b1 will have been
subtracted and the appropriate operands can move to the second
segment of the pipeline. At the same time, a2 and b2 can enter
the pipeline at segment l, Provided we have a continuous stream of
operands ai and bi moving through the pipeline, a sum will
emerge from the end of the pipeline every clock cycle. If on the
other hand, only two numbers need to be added, 4 clock cycles will
be required for the operands to completely move through the
pipeline. Thus, a pipeline becomes effective only if a continuous
stream of operands is available. This can be accomplished by vector
operations. If two long vectors are to be added, the overhead of
filling and draining the pipe is negligible and our pipeline for
floating point addition would give a sum every clock cycle, or 1n
l/4 the time required for an isolated sum.

Machines with long pipelines will only perform close to their
limit provided the problem can be structured in terms of vector
operations. An array processor which operates on large arrays of
data or performs operations on large matrices can make use the
pipeline conce very effectively.

3.4 and Asynchronous Devices

A single processor or a computer with a single control unit 1s
normal a synchronous device. Events such as loading a register,
activat an ALU, etc. are clocked by a pulse train and occur at
predictable times, External interrupts, of course, occur
asynchronously. Most SIMD machines, having a single control unit,
are synchronous. ILLIAC IV, for example, operates in a lock-step

(15)

Subtract
exponents

Segment

1

Figure 4.

Shift
mantissa

Segment

2

Add
mantissas

Segment

3

Normalize
and round

Segment

4

XBL 801 "22

A pipeline for floating point addition. The result
c1=a1+b

1
emerges from the last segment of the pipeline

at tne same time the operands as and bs enter the first
segment. Each segment of the plpeline performs one
step in the addition of two operands.

(16)

fashion such that every one of the 64 processing elements is clocked
by a global clock. Multiprocessors, on the other hand, are normally
asynchronous in that each processor has its own clock and events in
one processor are not in step with those in another processor. For
an asynchronous multiprocessor, a totally asynchronous algorithm 1s
preferred, if one can be found, since synchronization is costly.
Synchronizing events in an asynchronous device requires flags or
signals to be communicated from one processor to another and perhaps
back again (hand shaking), in order to indicate when a calculation
is completed, data is ready, data is required, etc. Some
synchronization is, of course, inevitable but it should be
minimized, since it requires a processor to remain idle. If an
asynchronous algorithm is not used, having to synchronize events in
an asynchronous multiprocessor, particularily if it has to be done
often, is a disadvantage. On the other hand, an asynchronous
multiprocessor is more flexible and not as restricted to vector
operations.

Some array processors have only a single control unit and every
operation is clocked in a lock~step fashion. The unit from Floating
Point Systems, Inc. is one example. Alternatively, some array
processors, such as those produced by CSP, Inc., are effectively
multiprocessors, with more than one control unit. 1be unit produced
by Datawest Corporation has four control units but, unlike the norm,
these operate in a synchronous fashion. The four control units
include only one program counter, and only one control unit, the
master, is allowed to execute jump instructions. The individual
units can execute different instructions, but all four must execute
exactly the same number of instructions (including possible
do-nothing instructions). The array processor from CSP, Inc. is
more like the classical multiprocessor, in that it is an
asynchronous device and individual processors must set hardware
flags to synchronize global events.

3.5 Transfer of Data To and From a Host

An array processor generally attaches to a host through some
form of interface. A critical question in the applicability of an
array processor to various computational problems is the speed at
which data can be transferred between the host and the AP. Some
calculations may involve very little transfer of data and have a
small code which will fit entirely into the array processor. For
this case, one can expect an array processor to perform well. The
Monte Carlo calculations of statistical mechanics, for example,
would appear to satisfy these contraints. On the other hand, if a
problem requires a great deal of data, i.e., if the number of
operations performed in the array processor, per fetch of a data
element from the host, small, then the speed of the interface may
be extremely important. In the worst case, the array processor
would effectively rema1n idle, waiting constantly for data to be
transferred.

(17)

Two types of data transfers between a host and a peripheral
device are common. Consider, as an example, the transfer of data
from the host memory to an interface. The first type of transfer ~s

programmed I/O. Here, the host would explicitly execute
instructions to effect the transfer. It might, for example, read a
word from memory into a register and then execute an I/0 instruction
to transfer the contents of the register to the interface.
Alternatively, with some hosts a single instruction might effect the
transfer directly. If the host was a PDP-11, these transfers would
take place via the Unibus shown in Figure 5. Programmed I/0 for
block data transfers requires the continuous fetching and execution
of instructions by the host and is slow compared to the second
alternative, which is direct memory access (DMA). With DMA, the
interface is "intelligent." It suspends the host CPU, captures the
bus (Unibus, in this case), and directly transfers blocks of data
from th~ host memory to the interface. In the same way that
transfers from the host to the interface can involve either
programmed I/O or DMA, transfers from the interface to the array
processor may also involve either programmed I/0 or DMA. Not all
array processors have this complete flexibility.

The rate of data transfer depends on whether it is programmed or
DMA transfer, and the inherent speed of the bus. In addition, if
transfers are initiated by FORTRAN calls in the host, as is usual,
there can be a large overhead in initiating the trans both
the manufacturer 1 s supplied routines which call the host operating
system and in the host operating system itself. These overheads can
be many milliseconds and are deadly if many small data transfers
must be made. Given a particular application, it is important to be
sure that data transfers can take place at a rate which will keep
the array processor busy.

4.0 Current Commercial Products

Since there are very few unifying architectural features among
array processors it is necessary to describe individual products and
their characteristics. There is a considerable number of products
on the market but most of these are signal processors, have only
integer arithmetic, have limited precision, or are otherwise not
significant for high performance scientific calculation. Mention
will only be made of those products which it is thought might be of
greatest interest to computational chemists. The distinction is
based mainly on the precision of floating point computations. No
attempt is made to review array processors with a floating point
word equal to or smaller than 32 bits.

(18)

I
I

!,,
I

1 CPU I
I I
L--~_J

Figure 5.

r- -..,
I I
1 Memory 1
I I
L--=..J

--,
I

1/0 1
I

=---l

Array Processor Attached to a Unibus

(19)

'"'

'
Unibus interface

'I'
';if

Array processor

XBL 801 • 24

4.1 Floating Point Systems, Inc., Beaverton, OR 97223

The market for scientific number crunching with array processors
is dominated by Floating Point Systems. Their AP~l20B, which
attaches to minicomputers, and their AP-190L, which attaches to
mainframes like the IBM 370, are identical except for the host
interface. A new product, the FPS-100 is essentially identical to
the other two except that it uses cheaper, slower, and less power
consuming LS-TTL (low~power Schottky) chips rather than S-TTL
(high-speed Schottky) chips. It has a cycle time of 250 nanoseconds
rather than the 167 nanoseconds of the AP-120B and AP-190L. It 1s
an OEM (original equipment manufacturers) product, however, and 1s
only sold quantities of 20 or more.

A wide variety of interfaces are available for the Floating
Point Systems 1 (FPS) product, with the Unibus interface being the
most common. The Unibus has an absolute maximum transfer rate of
1.5 Mbytes/sec. Presently, to interface to a VAX-11/780, the
AP-120B must attach to the Unibus, although it probably will
eventually interface directly to the much faster synchronous
backplane interconnect (SBI). Digital Equipment Corporation (DEC)
is developing an interface for the SBI which would facilitate
attaching an AP-120B to the SBI. It is unlikely that this faster
interface will be available prior to 1980. FPS has indicated an
intent to develop an interface for the LSI-11 bus. This is of
considerable interest since it would allow a relatively inexpensive
microcomputer, such as the PDP-11/23, to act as a host. FPS has
sold a number of FPS-lOO's to First Data Corporation of Westmont,
Illinois who have indicated that they will package a PDP-11/23 and
an FPS-100. This may be an economical alternative for users not
having or requiring a more sophisticated host.

Some of the interfaces that exist are to the IBM 370, DEC 10,
UNIVAC, PDP-11, PRIME, INTERDATA, HEWLETT-PACKARD, HARRIS, and
ECLIPSE. It is advisable to consult FPS about interfaces for
particular hosts. It would appear that they are sometimes willing
to develop new interfaces when there is a particular demand.

The AP~l20B is a completely synchronous device with a cycle time
of 167 nanoseconds. Every instruction takes exactly one cycle,
although the results of an operation initiated in one truction
may not be available at the next instruction, but only one or more
cycles later. The synchronous behaviour makes it very easy to
determine the execution time of sections of code, provided no
communication with the host is taking place. For example, a loop
which is 10 instructions long, with no branching, will require
exactly 1.67 microseconds for each time around the loop. A true
benchmark, must include the communication overheads, however, unless
the complete program and all data reside in the AP and the execution
time in the AP is long with respect to its startup time (a few
milliseconds).

(20)

The AP~l20B is a horizontally microcoded machine. By this, we
mean that the instruction set is based on relatively primitive
machine operations, such as register transfers along specific
internal buses, and that an instruction contains a number of
different fields, each field controlling one of a number of possible
parallel operations. The instruction word is 64~bits wide, and up
to 10 operations can occur in parallel. In practice, it would seem
impossible to write code which has more than 5 or 6 operations
occuring simultaneously and commonly there are 3. There are no
macroinstructions, as defined in our discussion of microprogramming,
and the AP~l20B's microinstructions are the machine instructions. A
microassembler (APAL) is available for symbolic coding of the
various parallel microoperations.

The AP~l20B has separate program and data memories. The data
word is a 38~bit floating po word with a 10 bit exponent and a 28
bit 2's complement mantissa. This leads to approximately 8 decimal
digits of precision over a wide range (~ lo±150). Although a
64~bit machine has been announced by CSP, Inc., 38 bits is the best
precision available in any currently available array processor. The
FPS precision has to be considered minimal or inadequate for many
scientific calculations. When it is adequate, another problem
arises. In normal operation, host floating point formats and
AP~l20B floating point formats are converted 11on~the-fly" by
hardware in the interface. Th means that for most hosts the 38
bits will be chopped to single precision 32 bits on passing data
from the AP~l20B to the host. This might be all right for some
calculations in which only the final answer is passed to the host,
but it is a problem with many calculations. A group at Cornell,
where an AP~l90L is attached to an IBM 370/168, requested and
received from FPS an interface which converts 38 bits to double
precision 64 bits. Whether this option is or will be available for
hosts other than the 370/168 is not clear. Depending on the
application, it might be possible to preserve the 38 bits by user
written software, without severely slowing a calculation down.

A block diagram of the AP~l20B indicating its data paths is
shown in Figure 6. Neither the control unit nor the path from
program memory to the control unit is shown. The architecture
includes a floating point adder and a floating point multiplier.
These are both pipelined units. The pipelines are reasonably short
which is advantageous for non~vector operations, since the pipelines
can be filled or drained reasonably quickly. TI1e adder has 2
segments and the multiplier 3 segments. These can be compared with
the corresponding 6 and 7 segments of the Cray~l. Thus, an
independent add and multiply can be initiated every cycle (167
nanoseconds) but isolated additions and subtractions require 333 and
500 nanoseconds, respectively. The program memory is fast bipolar
(TTL) memory and is currently relatively expensive ($3,500 per lK
words) By comparison, 1 Mbyte of MOS memory for a minicomputer can
currently sell for less than $15,000. Addresses are limited to 12
bits by the architecture and the maximum program memory is 4K words

(21)

(4096 microinstructions). This is relatively small and is
equivalent to perhaps 300 or 400 FORTRAN statements using the
FORTRAN compiler that is available. On the other hand, it will seem
very large if one tries to hand~code 4096 microinstructions. The
main data memory is addressed by 16 bits and the normal maximum size
is 64K words (a new page select option is available which allows
segmentation and an extension to one million words). TI1e lack of a
linear address space does not make more than 64K words usable in a
simple convenient way, however. As shoW11 in Figure 6, there is a
data path from main data memory to program memory and it is possible
for the user to write his own overlay routines to store programs ~n
data memory (in 32 bit sections, right justified in two 38 bit
words) and to transfer sections of code from main data memory to
program memory as needed. To accomplish this is not a trivial
programming job.

The AP~l20B can include up to 64K words of fast (and therefore
expensive) table memory. The standard option is 2.5K words of ROM
programmed by FPS with constants for calculating sines, cosineg,
square roots, etc. It also includes constants like 1.0, 2.0,
and 7r~ While not offered as a standard option, it might be
possible to obtain ROM programmed with the user's own set of
constants, for polynomial evaluation of special functions, for
example. A RAM option is also available. Some people have found
RAM table memory very useful for storage of user constants, s~nce

they can be accessed in parallel with main data memory.
The internal registers (accumulators) include 2 sets of 32

registers -data pad X (DPX) and data pad Y (DPY). One each of DPX
and DPY can be read and written in each instruction. Unfortunately,
addressing of these registers is not totally straightforward and
only 8 of each of DPX and DPY are available at a given time. Most
user programs use only a few registers, however.

The S-PAD, which includes an ALU and sixteen 16-bit integer
registers, is used for address arithmetic and integer operations.
The AP-120B is deficient in its integer operations. The S-PAD ALU
has no provision for integer multiplication or division. These
operations are normally done, after conversion to floating point, 1n
the floating point units.

The address registers
bits) are used to address
data pads, respectively.
DPX and DPY.

MA (16 bits), TMA
main data memory,
A 3 bit offset is

(16 bits) and DPA (5
table memory and the
added to DPA for each of

It is possible to add peripherals (for example, disks) directly
to the AP-120B. The lOP is a hard-wired interface and the PlOP is a
programmable (intelligent) interface. In applications that require
large amounts of data transfer, it might be worthwhile attaching a
disk directly to the AP~l20B, in order to eliminate host overhead.
These options are relatively new and no experience in their use has
been passed on to the author. It seems that this option is not yet
well supported by FPS.

(22)

As illustrated by Figure 6, the data paths of a machine like the
AP~l20B are an exerc in the theory of connectivity. For example,
one operand (Ml) of the multipl can come from one of DPX, DPY,
table memory, or the output of the multiplier. The other operand
(M2) can come from one of DPX, DPY, main data memory, or the output
of the adder. Bottlenecks do occur, as not all desirable direct
transfers are possible, but the multiplicity of data paths is
certainly one of the AP~l20B 's better features. Since the outputs
of the adder and multipl connect to the inputs of the adder and
multiplier, vector operations can be chained.

from the data pads, accesses to memory in the AP-120B
require care in programming since ~n~tiation of memory references
can not, in general, occur every instruction (cycle) and the result
of a memory read will only be available 2 or 3 cycles after its
initiation, depending on the type of main data memory used. The
standard main data memory has a cycle time of 333 nanoseconds. With
this memory a main data memory reference can be initiated only every
other instruction. A memory reference is initated by changing the
main data memory address register (MA). If the main data memory
input register (MDI) is altered in the same instruction, the memory
reference is interpreted as a write rather than a read. The result
of a memory read is only available in the main data register (MD),
ready for use, three instructions beyond that in which the reference
is initiated. The main data memory is two-way interleaved using 16
banks of 4K words, where the three most significant bits and the
least significant bit of the address determines the bank. If
references refer to the same bank, then they must be separated by
two intervening instructions rather than the normal one intervening
instruction. For example, memory references to sequential addresses
can occur every two cycles, but those to addresses spaced by two can
occur only every three cycles. If the faster 167 nanosecond main
data memory is purchased, then memory references can be initiated
every instruction and the result of a read is available for use by
an instruction two after that which initiated the read. Programs
are not always transferable between units with different speeds of
memory. Table memory uses a fast 167 nanosecond bipolar memory for
which a read can be initiated every instruction and data B

available for use in the second instruction following.
The software for the AP~l20B is not ideal but is probably the

most extensive available for any array processor. It includes APEX,
an executive routine, written FORTRAN and host assembly language,
which resides in the host and faces to the host operating
system. If standard FORTRAN calls are made to a library of array
processor routines from a standard application FORTRAN program, then
APEX will automatically handle the loading of library routines into
the AP~l20B. It similarly will handle FORTRAN calls made to library
routines to transfer data in and out of the array processor,
initialize the array processor, etc. A considerable library of
mathematical routines is lable, including Householder
diagonalization of matrices. It is unlikely, however, that the

(23)

programs of computational chemistry can get by with only the
standard subroutine library. To add one's own subroutines to the
library requires coding in APAL, the array processor assembly
language. The assembler is a cross~assembler, written in ~ORTRAN,
which normally runs on the host to produce a relocatable output
object deck. Object decks are then run through APLINK, again a
FORTRAN program which runs on the host, to produce load modules
which are actually FORTRAN subroutines containing a call to APEX and
the array processor microcode in DATA statements. These FORTRAN
routines are then included with one's own FORTRAN application
program. A call to one of these library routines results in a call
to APEX, which loads the microcode into the array processor if it is
not already there. If many small library routines are called, the
overhead in the host can be very high. To alleviate this problem, a
vector function chainer (VFC) is available which allows one to
combine a number of sequential calls to library routines into a
single call.

In addition to the above software, a simulator (APSIM), a
debugger (APDBUG), and various hardware diagnostic routines are
available. The simulator is written in FORTRAN and runs on the
host. Using it, one can simulate array processor programs and their
execution times without having an array processor. Most programs
are debugged on the simulator prior to ever attempting to execute
them on the AP-120B.

A FORTRAN compiler has been announced by FPS and is apparently
now available, although it is impossible to know at this point how
efficient (or inefficient) it will be. Writing a compiler for an
instruction set like that of the AP-120B is a research problem and
is not a simple task. The FPS compiler derives from one written at
Cornell University and it probably will generate code comparable to
that of the Cornell compiler. Both compilers are written in FORTRAN
and are large programs. The Cornell compiler requires over 700K
bytes of memory. The size of the FPS compiler is not known but it
will certainly not fit in 256K bytes and probably not in 512K
bytes. It is thus not usable, for example, on a PDP-11/23 host.
Because every AP-120B instruction requires exactly 167 nanoseconds,
the efficiency of the compiled code is a simple direct function of
the number of AP-120B instructions generated. The expansion factor,
i.e., number of AP-120B instructions per FORTRAN statement, seems to
be between five and twenty with ten as an average. This compiler
generated code is described as being 5-10 times larger than
hand-coded APAL instructions. Using a FORTRAN compiler thus limits
one to something in the vicinity of 400 FORTRAN statements and an
execution time 5-10 times longer than that obtainable using APAL.
Since it is possible to initiate a floating point addition and a
floating point multiplication every cycle (1/6 microseconds), the
AP-120B has a theoretical upper limit of 12 MFLOPS (million floating
point operations per second). If operands come from the data pads,
it is possible to code a dot product routine with an inner loop only
one instruction long and thus attain this upper limit of 12 MFLOPS.

(24)

If, however, operands come from main data memory which will almost
always be the case, then, since a memory reference can only be
initiated every other cycle, the inner loop is necessarily four
instructions long (2 operands) and the dot product runs at 3
MFLOPS, The code generated by the Cornell compiler for a dot
product, which may be taken to be indicative of the state of the art
in automatic code generation for the AP~l20B, has an inner loop
which is 34 instructions long, Thus, a dot product using code
generated by the FORTRAN compiler runs at only 0.35 MFLOPS, For
comparison, the dot product on a VAX~ll/780 with floating point
accelerator runs at about 0.26 MFLOPS if operands come from the
Cache, In addition, the AP~l20B numbers do not include any possible
host overhead. The above numbers problably show the AP-120B in its
worst possible light but they do indicate the loss of efficiency
with compiled rather than hand-generated code,

To illustrate, if nothing else, the complexity of coding in
APAL, the code for a dot product C = N~lAiBi is given below:

i=O

A $EQU 0 "BASE ADDRESS OF A
I $EQU 1 "INCREMENT FOR A
B $EQU 2 "BASE ADDRESS OF B
J $EQU 3 "INCREMENT FOR B
C $EQU 4 "ADDRESS OF C
N $EQU 5 "VECTOR LENGTH

DOTPR: MOV A,A; SETMA "FETCH A(O)
NOP "WAIT FOR MEMORY
MOV B,B; SETMA "FETCH B(O)
DPX-MD; "SAVE A(O)

INC N "KEEP COUNT RIGHT
ADD I,A; SETMA "FETCH A(l)

FADD ZERO,ZERO "CLEAR SUM
LOOP: FMUL DPX,MD; "DO A(I)>'<B(I)

FADD; "PUSH ADDER
DEC N "SEE IF DONE

BEQ DONE; "BRANCH IF DONE
FMUL; "PUSH MULTIPLIER
ADD J ,B; SETMA "FETCH B(I+l)

DPX-MD; "SAVE A(I+l)
FMUL "PUSH MULTIPLIER

FADD FM,FA; "ADD (A(I)*B(I)) TO SUM
ADD I,A; SETMA; "FETCH A(I+2)
BR LOOP "BRANCH BACK

DONE: MI-FA;MOV C,C; SETMA; "STORE RESULT IN C
RETURN

$END

(25)

Semicolons here separate parallel operations 1.n the same
instruction, i.e. indentation continues the same instruction.
A,I,B,J,C, and N are S-Pad, 16-bit integer registers. A memory read
here is initiated by setting the main data memory register (SETMA)
with the result of an S-Pad operation performed in the same
instruction. Thus, MOV A,A; SETMA moves the contents of register A
back into register A only to present an address for the SETMA
operation. The initiation of a memory write, such as in the last
instruction of the program, is identical except that the main data
memory input register (MI) must be loaded (in this case with the
output of the adder (FA)) in the same instruction. In the other
memory references, such as ADD I,A; SETMA, register A is incremented
by the contents of register I and the result is available in the
same instruction for SETMA. Since memory references can occur only
every other cycle, a "no-operation" (NOP) is necessary at
instruction two. The result of this first memory read, is available
in the main data memory registrer (MD) only at the fourth
instruction (3 instructions after the reference is initiated), where
it is temporarily stored in one of the data pad registers (DPX
MD;). Operands are entered into either the adder pipeline or the
multiplier pipeline by the instructions FADD and FMUL with two
operands. These initiate the first segment of each pipeline.
Operands will not flow through the pipeline on their own, however,
and must be pushed through by executing subsequent FADD or FMUL
instructions. Without arguments, these instruction do not enter new
operands into the pipeline but simply push existing operands on to
the next segment of the pipeline. In this example, the three
segment multiplier requires two pushes and the two segment adder
only one. The outputs of the adder and multiplier (FA and FM)
remain in these locations until replaced by the result of new
additions or multiplications.

Although not extreme in this example, careful inspection will
show the way parallel execution of more than one operation in an
instruction enables one to "wrap" code around in a loop once the
loop is properly initialized. In this example, the highest degree
of parallelism is essentially only three. For example, the second
to the last instruction includes an addition, the initiation of a
memory reference, and a branch. This loop is an example of a memory
limited loop. Since it includes two references to main data memory,
the loop must be at least four instructions long. As indicated
previously, if operands come from separate data pads, DPX and DPY,
the loop, after appropriate intialization, could be reduced to the
single instruction,

LOOP: FMUL DPX, DPY; INCDPA; FADD FM, FA; DEC N; BGT LOOP

Here, INCDPA increments the data pad address register.
As the example illustrates, programming the AP~l20B 1.s not for

the faint of heart. Most chemists are not accomplished assembly
language programmers and microcoding the AP~l20B has been described

(26)

as between 2 and 10 times more difficult than normal assembly
language progamming, If an AP~l20B is used for chemical
computations, a choice must be made between the inefficient code
produced by a FORTRAN compiler and the very large investment in time
and effort required to generate APAL programs.

The present price of a representative configuration (without
RAM table memory) of an AP~l20B for attachment to a VAX-11/780 is
shown in Table l,

(27)

Table 1.
Current Pricesl for a Representative AP~l20B Configuration

No.

AP~l20/664

AP-PS1024

AP-PS2048

AP-DE03-I

AP-PDS-DE04

AP-Fort79.1

AP~l20B Configuration2 with
64K Words of 38-bit Fast
Main Data Memory (DMF32);
1024 Words of Program Source
Memory; 2.5K Words of ROM
Table Memory; and Standard
Math Library.

1024 Words of Program Source
Memory

2048 Words of Program Source
Memory

Computer Interface; DEC VAX
11/780 (Unibus)

Software Interface; DEC VAX
11/780 (Unibus)

Program Development software3

FORTRAN compiler for array
processor

73,360

3,760

7,145

6,000

6,000

3,000

8,500

TOTAL $107,765

NOTES:

1 As of June 1, 1979.
2 Contains APEX (operating system driver), AP-TEST (diagnostic

software for the AP-120B), system installation and
acceptance.

3 Contains APAL (array-processor assembly language), APLINK
(linker for code produced by assembler and FORTRAN), APSIM
(software package to simulate array-processor actions on
the host), APDBUG (a debugger for AP software), and VFC (the
vector function chainer).

(28)

4.2 CSP Inc., Burlington, MA 01803

The main competition and perhaps the only competition, with
respect to the calculations of computational chemistry, for FPS
comes from CSPI (originally Computer Systems Products, Inc.). CSPI
has announced a 64 bit array processor, the MAP~6400, which is
expected to be available early in 1980. Little explicit information
is yet available on the MAP~6400 so the MAP~200, which it will most
closely resemble, will be described first. CSPI also produces other
related 32~bit machines ~ the MAP~lOO and MAP~300.

The MAP~200 is a 32 bit floating point array processor which
uses the IBM single precision floating point format (about 6 decimal
digits). Unlike the AP~l20B it has independent asynchronous
processors which each execute separate processes. A block diagram
of it is shown in Figure 7, Each processor attached to three
independent buses and associated memories. A number of I/0
processors (scrolls) can be attached to it. Apart from the I/0
processors, the unit contains four asynchronous processors: the
central signal processing unit (CSPU), which is the master of the
other three; a host interface scroll (HIS), which is responsible for
transfer data and programs from the host to one of the three
memories; an arithmetic processing unit (APU), which contains a
small number of registers and a floating point multiplier and adder;
and an arithmetic processor scroll (APS), which is responsible for
address arithmetic and fetching operands from memory for the APU and
storing in memory the results of APU calculations. Both the APU and
APS are contained in the arithmetic processor of Figure 7. Apart
from the CSPU, each of the processors has its own small program
memory ~~ 256 16~bit words for the APU, 128 2S~bit words for the
APS, and 64 32-bit words for the HIS. The CSPU's program is stored
in one of the three main memories, Thus, there are four (apart from
attached I/0 devices) independent instruction streams. The CSPU ~s
a reasonably fast (125 nanosecond cycle time) processor with a
general purpose integer~only instruction set. It is responsible for
loading the small local program memories of the APU, APS, and HIS
from one of the three main memories and, in general, it controls all
of the other array processor resources upon command from the host.
Comraunication between processors occurs via hardware flags and an
elaborate interrupt mechanism. The APU is data driven; it has a
queue of operands, which is filled by the APS. If the queue is
empty, the APU idles. This independent asynchronous generation of
operands and operations probably works fine for simple vector
operations on long vectors but computation could be overwhelmed by
communication problems if the code includes much branching (the GO
TO and IF statements of FORTRAN). A normal philosophy of
multiprocessor programming is that, because one has independent
instruction streams, one can and should maximize control (branching)
within a process and simultaneously minimize communication between

(29)

processes. The special CSPI architectural relationship between the
APU and APS does not allow this. Control requires expensive
communication. The MAP~200 thus, in some ways, resembles a SIMD
machine where one must minimize control at all costs. In the
author's opinion it has most of the disadvantages of any MIMD
machine but fewer of the advantages.

The instruction set of the MAP~200 is vertical rather than
horizontal and, apart from the multiprocessor aspects, programming
it is similar to that of normal assemb language programming. One
would thus expect it to be easier to program than the AP~12QB,
Users report, however, that its asynchronous nature can make it very
difficult to program. Between the FPS and CSPI machines one has the
trade-off between difficult horizontal microcode but simple
synchronous behavior (FPS) and simple vertical instruction set but
difficult asynchronous behavior (CSPI). TI1e software available
includes a math library (insufficient for many computational
chemistry applications), an assembler and simulator, which are
written in FORTRAN and run on the host, and appropriate interfaces
to the host operating system. A FORTRAN compiler is planned but has
not yet been announced. The CSPI concept of a function list is
analogous to FPS's vector function chainer, but is apparently easier
to use.

The MAP-6400 will merge two of the 32-bit data buses and their
associated memories into a single 64-bit data bus and a single data
memory. The remaining 32-bit bus and memory will be used
exclusively for programs. A system with 32K of 64-bit data memory
and 16K of 32-bit program memory will apparently cost in the
vicinity of $89,000. This configuration includes slow (500
nanoseconds) memory but faster and/or larger memories will be
available. After other cost are included, the price is likely to be
similar to that quoted above for the AP-120B. "The basic
multiplication time of the MAP-6400 is slightly under 1
microsecond. Addition takes considerably less time. If an addition
is requested immediately after a multiplicat , the two operations
will be executed in parallel, in the time of the multiplication.
Thus, one addition and one multiplication require one microsecond (2
MFLOPS) and CSPI quotes 1 second for a 100 x 100 matrix
multiplication. They quote an unknown configuration of the
VAX-11/780 to require 12 seconds for the same matrix
multiplication. The MAP~6400 is quoted as performing a 50 x 50
matrix inverse in 227 milliseconds, The corresponding AP~l20B time
(333 nanosecond memory) is 202 milliseconds, not including any
possible overhead. These numbers make the MAP~6400 appear
reasonably attractive, at least for straight~forward matrix
operations, particularily since these times are for 64~bit rather
than 38~ bit arithmetic, One problem with the MAP~6400 1 s 64~bit

floating point word is that user software will be needed to convert
to other than IBM's format on passing to and from a host, The
MAP-6400 has a theoretical upper limit of 3 MFLOPS (assuming two
additions can be hidden behind a multiplication rather than just

(30)

one, as described above), TI1e AP~l20B has a theoretical upper limit
of 12 MFLOPS but commonly runs at 2~4 MFLOPS for memory access
limited loops, although there is at least one example of a
chemically significant inner loop which runs at 10 MFLOPS, as
discussed later.

L;, 3 Datawest Corporation, Scottsdale AZ 85260

The Datawest Model 480 array processor is an interesting but not
inexpensive product (about $500,000 for a basic configuration) which
atta.ches to UNIVAC mainframes. It contains four multipliers and
eight adders and is theoretically capable of 120 MFLOPS. The
floating point format (36 bits, equivalent to the UNIVAC format)
uses only 8 bits for an exponent and the 480 thus has the identical
precision of the AP-l20B, without the problem of chopping to 32 bits
upon transfer of data to the host,

It is a multiprocessor with four processors, called slices, and
four instruction streams. Unlike other multiprocessors, it ~s
synchronized. The four processors can execute different
instructions but there is only one program counter and each
processor must execute exactly the same number of instructions.
Each processor is horizontally microcoded with a 72-bit
microinstruction. Alternatively, since there is only the single
program counter, the four simultaneous instructions can be described
as a single instruction which is 4 x 72 = 288 bits wide. Only one
of the processors is capable of executing branch or jump
instructions and the other three remain idle during a branch. Each
processor has a number of registers, a floating point multiplier, 2
floating point adders, and an integer ALU. The floating point
mul pl and adders are pipelined with 4 segments each. The cycle
time is 100 nanoseconds so that 400 nanoseconds is required for an
isolated addition or multiplication, but only 100 nanoseconds if the

lines are kept fulL The program memory size is 8K 36~bit
words expandable to 64K. This is equivalent to 1024 288~bit
microinstructions. Every 100 nanosecond cycle a 72~bit
microinstruction is executed by each of four processors. The data
memory size is 64K 36~bit words expandable to 1024K. Each processor
can access data simultaneously. The bandwidth (data transfer rate)
for communications with the host can be made very high (40M words
per second) if four interface ports are used.

It would appear that as an array processor, the Datawest 480 has
promise of be a very high performance machine and those
installations using a UNIVAC machine would do well to consider it
carefully. The software available includes an executive with
multiuser capability, microassembler, simulator, etc. Again, a
major investment in effort would be requ to develop software,
since high~level languages are not available.

(31)

4.4 Other Products

There are few remaining products that in the author's op~n~on
are of interest for computational chemistry applications. IBM
produces an array processor, the 3838, but it is considerably more
expensive than the FPS and CSPI products and is limited to 32~bit
single precision arithmetic. Data General produces an array
processor which is integrated into an ECLIPSE S/130 minicomputer.
Its price is quite reasonable but it is also limited to 32-bit
single precision arithmetic. In addition, its microcode is in ROM
and not programmable. Only a few standard vector operations, mostly
oriented toward FFT's, are available with the S/130. This array
processor, however, has 64-bit buses (used for 32 bit real and 32
bit imaginary parts) and could conceivably be turned into an
attractive 64 bit machine by eliminating complex arithmetic,
replacing the 32-bit multiplier and adder by their 64~bit
counterparts, and using RAM for the microcode. It is unfortunate
that almost all array processors were developed for signal
processing applications rather than high precision scientific
computation. It would be very desirable to make better known to
manufacturers the needs of the computational scientific community.

5.0 User's Experience

A number of chemists are thinking of getting array processors or
perhaps even have written proposals for the funding of one. So far,
however, the experience of the computational chemistry community
with array processors is still rather limited. Here we try to
summarize the limited experience of researchers who have used array
processors for problems related to those of computational chemists.
We have been unable to find anyone using a CSPI array processor for
other than signal processing applications, so remarks will need to
be confined almost exclusively to user's experience with the
Floating Point Systems' AP-120B. Until chemists or physicists have
experience with the MAP-6400 it will be a difficult product to
evaluate.

The st array processor in chemistry (serial #2) was obtained
by the group of Professor Kent Wilson at the University of
California, San Diego. As one of the first FPS products, the
hardware was unfortunately plagued by difficulties. Eventually, it
was replaced by a new model. Since then, it has been quite
reliable. Their AP-120B has L5K of program memory and 64K of data
memory, although they managed with much less data memory for some
time. It is attached to a microcoded California Data computer
emulating the instruction set of a PDP-11/40, although it will be
transferred to a VAX~ll/780 in the near future. This group has used
the AP~l20B mainly for molecular dynamics simulation of molecular
motion and chemical reaction. All of their programs have been

tten in APAL and their complete molecular dynamics programs fits

(32)

into their minimal L5K program memory. Without great data handling
problems and with the total program residing in the array processor,
this group has not experienced problems with host overhead and data
transfers. It is difficult to quote a megaflop rate for their code,
sJ_nce they evaluate the potential by a table lookup. They quote
the code as containing 2~3 operations per instruction. After some
years experience, this group appear to be using an AP~l20B very
successfully in molecular dynamics calculations.

Considerable effort has gone into array processors at Cornell
University. An AP~l90L is attached to the university's IBM
370/168. Two thirds of it was purchased by a group of physicists,
including Professors K.G, Wilson, G. Chester and others. The
remaining third was purchased by the computer center for general use
on campus. A group of individuals, headed by Dr. Alec Grimison, in
the Office of Computer Services, has been responsible for writing
approximately 2 man~years worth of software which make their system
usable by the average FORTRAN programmer. This software includes
APEMAN, an array processor execution manager which interfaces to the
VM/370 Conversational Monitor System of their 370/168 and schedules
user's jobs for execution on the array processor, as well as the
FORTRAN compiler mentioned earlier. Both pieces of software are
available to academic institutions ~ $3500 for APEMAN and $5000 for
the FORTRAN compiler. In spite of the difficulties of producing
efficient code from a FORTRAN compiler, it is thought that compiled
jobs run on the AP~l20B about as fast as they run on the 370/168.
The main reason for having an array processor and the prime reason
why considerable effort has been spent developing software for array
processors is the cost to the user - $1476 per hour for the 370/168
versus $40 per hour for the AP-1901. Their configuration includes
4K of program memory and 96K of main data memory, although only 64K
are accessible to the FORTRAN programmer (the compiler does not
understand the segmentation mechanism which allows one to access
more than 64K). A small amount of RAM table memory is available but
is not used by the compiler. It a bit unclear what kind of jobs
are being run by the general user. Since there is a limit of
approximately 400 FORTRAN statements internal to the array processor
and an imposed time limit of 15 minutes, it can be assumed that many
are small jobs, mainly run on the AP-1901 for its cost -
effectiveness. Longer jobs can be run provided thy are checkpointed
and go to the end of the queue every 15 minutes. Very large tasks,
which restrict themselves to a sequence of calls to subroutines of
fewer than 400 FORTRAN statements, can thus be run ~n a sequence of
15 minute time slices.

The scientists who own 2/3 of this machine use it mainly for the
Monte Carlo simulations of statistical mechanics. Monte Carlo
programs have small code and, unless configurations are kept for
some later use, very few data handling problems. They are thus
probably ideally suited for an array processor such as the Floating
Point Systems' machine. Those with experience in these codes claim
that, at least for their applications, the AP-120B (or AP-1901) is

(33)

as much a very fast scalar processor, as it is an array processor.
That is, since the pipelines are quite shallow, one need not have
the normal very long vector operation to obtain high throughput.
The degrees of parallelism of this machine are as important as the
pipelines. A recent paperl4 outlines some of the Cornell group 1 s
benchmarks and experience with their AP-1901.

A second group at Cornell headed by Professor H. Scheraga, of
the Chemistry Department, in collaboration with Professor C. Pottle
of the Electrical Engineering Department, have attached an AP-120B
to a Prime 350 minicomputer. The configuration includes 32K words
of main data memory, 2.5K words of program memory and lK words of
RAM table memory. The AP~l20B will initially be used for molecular
mechanics calculations on peptides, i.e., to find the minimum energy
conformation of small enzymes. The computationally intensive part
of their calculation, i.e., the calculation of the energy and its
gradient, has been written in APAL and reside wholly in the array
processor, while the outer sections of code, including the
non~linear minimization, are run on the host. They have only
recently gotten their array processor running, but a few explicit
results are already available. Initially, they have minimized the
energy with respect to 154 dihedral angles of Bovine Pancreatic
Trypsin Inhibitor (886 atoms) using a coulomb interaction of point
charges plus a 6~12 Lennard~Jones type potential for all non-bonded
interactions. A large amount of thoughtful effort has gone into the
APAL programming of the compute~bound inner loop of this
calculation. The very tight inner loop runs at 10.3 MFLOPS! Coding
such an inner loop is not for the amateur. Tbe BPTI calculation
required 27 hours of AP~l20B time plus 3.4 hours of host time. They
estimate this run would have cost $50,000 if run on Cornell
University 1 s 370/168. This group has used RAM table memory for
storage of Lennard-Janes parameters and for table lookup of
(R2)-l/2 and have found it very valuable, since it can be
accessed in parallel with main data memory and the data pad
registers. The Scheraga group is likely to use an array processor
very successfully. Some of the reasons for this have to include the
size of the group, which is fairly large by current academic
standards. It includes a senior research associate, half a dozen
postdocs, two or three full~time computer support staff and several
graduate students. In addition, the active collaboration of an
Electrical Engineering faculty member with expertise in computer
science and parallel computations, as well as the wide experience of
the Cornell campus with array processors must be taken into
account. Also, the problems, being solved, including Monte Carlo
calculations of water and aqueous solutions, are among those best
suited for the AP-l20B. Their experience does not completely answer
the question of whether a small research group with little computer
science expertise can successfully operate an AP~l20B. The chief
limitation of their Prime 350, AP-l20B configuration is the
minicomputer (only 196K bytes of memory, 6 Mbytes of disk storage
and no tape drives) rather than the array processor.

(34)

1ne Center for Plasma Physics and Fusion Engineering at UCLA
have a special configuration of the AP-120B, under the direction of
Professor J.M. Dawson. Their system was designed and implemented by
CHI Systems of Santa Barbara. Glen Culler of CHI Systems is
responsible for the initial design that lead to the Floating Point
Systems' product. The UCLA system is used mainly for plasma
simulations. These calculations are similar to the molecular
dynamics calculations of chemistry except that the pure coulomb
force allows an electric field to define the force on a particle,
eliminating the necessity of summing discrete interactions. As many
as a million particles can be treated. The large number of particle
coordinates and electric field components require external mass
storage and rapid data transfers. The UCLA CHI system has four
disks directly attached (through intelligent I/0 processors) to the
AP~l20B, to facilitate this movement of data. The total bandwidth
is about 106 38~bit words per second. The host is a specially
designed 16-bit fixed point processor with a 167 nanosecond cycle
time. An integer multiplication requires only 2 cycles. As well as
FPS software (APAL, math library), there is special purpose software
associated with the host. One piece of this software is a Math
System Language which interprets high-level instructions. Programs
are primarily written in the Math System Language except that
critical portions of production type codes are coded in APAL. The
system can be used interactively by a number of simultaneous users.
The time-shared operating system uses time slices of only a single
second duration and the user with long compute-bound jobs has to
write his programs such that they execute in very short steps. In
normal operating systerns, time slicing is invisible to the user.
The AP-120B, however, was not designed for time sharing and has no
interrupt mechanism etc. While the UCLA system may work well for
the plasma simulation problem, it is the author's opinion that for
the problems of computational chemistry the AP-120B is better
dedicated to the batch execution of long computationally intensive
jobs. One might, of course, still time share on the host. For the
plasma simulation problem, the UCLA CHI system runs about three to
four times faster than an IBM 360/91 and is quoted to be two orders
of magnitude more cost-effective. Like most estimates of
cost-effectiveness this does not, of course, include the man-hour
cost of software generation.

The group of Professor McTague in the Chemistry Department of
UCLA are planning to use the UCLA CHI system for molecular dynamics
simulation of argon on graphite (2000 atoms in two dimensions)
Perhaps, something on the order of a man-year (1 graduate student!)
has been invested in these calculations and the program is
apparently nearing completion. The UCLA AP-120B has only 512 words
of program memory but with careful assembly language (APAL)
programming the basic molecular dynamics routine will apparently
fit. The lack of hardware divide presents problems as usual, so
that the forces will be interpolated from a table, as a number of
others have also seen fit to do, instead of evaluating them

(35)

explicitly. Table evaluation of forces (or potentials) is probably
an appropriate technique to use for the AP~l20B, because of the
difficult receding problem encountered when the form of an explicit
force (or potential) is changed.

All of those doing Monte Carlo, molecular dynamics, or molecular
mechanics calculations with the AP~l20/B have chosen, willingly or
not, to code their critical sections of code in APAL. With effort,
they would all appear to have, or soon have, very cost~effective
approaches to a subset of the main computational problems of
chemistry. No one has complained bitterly that 38 bits of accuracy
is inadequate. Part of this must be the choice of problems, since
even more than 64 bits of precision appears to be required for the
very long classical trajectories of some chemical reactions. The
users who have chosen the problems carefully, appear to be
genuinely satisfied. This is not always the case, as illustrated by
a particular graphics application on an AP~l20B attached to a
PDP~ll/70. Even with hand~coding this application (assumed here to
be translation and rotation of a graphics image) ran no faster with
the AP~l20B than without it. This implies that if the AP~l20B was
attached to a VAX-11/780, which was the original intention, the
application would run about two times slower with the AP~l20B than
it would on the VAX alone (the VAX~ll/780 is about twice the speed
of a PDP~ll/70). Apparently, the overhead in the operating system
(UNIX) is so high, and so few calculations performed in the AP~l20B
per datum fetched from the host, that computation is swamped by data
communication problems.

6.0 Discussion

Many questions still need to be asked about the proper role of
array processors in computational chemistry. A few of these are
indicated in the appendix in association with the meeting held at
NRCC. Industry has probably been quite capable of producing the
"ideal" machine for computational chemistry, but unfortunately it
has not. Does the scientific community, particularily the academic
community, present enough of a market to influence the production of
devices which satisfy our needs? What are the needs of the
computational chemistry community? Many more questions can be asked
than answered. If our needs are to be met by manufacturers and if
we are to reap the benefits of the new VLSI technology, it may be
necessary to align ourselves with others with similar requirements.
The electric power industry, through the Electric Power Research
Institute, Palo Alto, has a program in operation which is designed
to thoroughly evaluate array processors, including in-house
experimentation, in order to decide, as best as possible, what is
the optimum architecture for the needs, and exert pressure on
manufacturers to satisfy these needs. The NRCC is many ways is a
very visible organization, representing a great number of chemists.
Should it, and can it, expand its horizon to include close contacts

(36)

with hardware manufacturers, the semiconductor industry, etc, in
order to lobby on behalf of computational chemists? Should it even
undertake a step in the direction of architectural research?
Computational chemistry is now a resonably mature subject with at
least some well defined needs. Can we assume that in the normal
course of events, industry will produce those devices with which we
will be satisfied? Chemists have led the way in designing and
building very soph ticated molecular beam machines, ion cyclotron
resonance machines, etc. Should computational chemists consider
only software and leave the hardware to others?

The question remains as to how chemists should compute in the
next 2 years, 5 years, or 10 years -with a supercomputer, a
minicomputer, an array processor, or some future architecture? The
answer is probably, with all of these. Array processors will
certainly become more powerful. Floating Point Systems, for
example, is expected to announce a new 64 bit array processor within
the next year. Other array processors can be expected to appear.
Minicomputers, with an attached array processor when appropriate,
will probably remain a very cost~effective means of computation, at
least until the effects of VLSI start having their impact on high
performance computation, perhaps in five years.

To return to the more mundane present it is still pertinent to
ask where and when the current models of array processors could or
should be used for chemical computations. Until more chemically
related experience is available with the CSPI MAP-6400, it must
remain an uknown product. Thus, until other products appear on the
market place, the only array processor with a precision beyond 32
bits which seems to merit very serious consideration by individuals
or chemistry departments is the FPS AP~l20B. With this or any other
array processor there remains the question of true
cost~effectiveness, given the sometimes huge investment in software
that must be made. This investment can be minimized if a FORTRAN
compiler is used, but the AP-120B may then not provide the
performance which, in the long run, makes using it advantageous
relative to the general purpose, well supported super-minicomputers
(which will continue to drop in price as the market expands and
newer technology is used in building them). Even with a FORTRAN
compiler, the AP-120B will almost surely require more support
facilities than an off-the-shelf minicomputer.

The problems of Monte Carlo or molecular dynamics simulation,
the classical trajectories of chemical kinetics, and molecular
mechanics calculations seem to be well suited to the use of an array
processor. They all require small code which would fit into the
small program memory of an AP-120B (perhaps not, if a FORTRAN
compiler is used), are compute bound, and can be formulated to
minimize communication with the host. They also can require vast
amounts of computational time which would be prohibitively expensive
on a mainframe like the IBM 370/168, if the user was charged 1''
dollars. Provided the prec1s1on problem is carefully weighed and
sufficient manpower is available to code at least critical inner

(37)

loops in microcode, the AP·~l20B should be seriously cons ide red for
the above problems.

Perhaps the major user of computational resources in chemis
is the quantum chemist. Can electronic structure calculations be
performed on an array processor? For example, can Gaussian 70,
Gaussian 76, etc. be executed on the AP-120B and, if so, can they be
executed efficiently? The answer, except in certain cases, is
probably no. The standard ab initio molecular orbital calculation,
as an example, consists of an gral evaluation step and an SCF
step. Depending on the program, s of molecule, basis set, etc.,
these two steps take the same time to within a small factor. The
bottleneck of the SCF step the simple multiplication of an
integral by appropriate density matrix elements and adding the
result to appropriate Fock matrix elements. This is far too few
floating point operations per fetch of an integral from the host (or
disk) to run effectively on the AP-120B. On the order of a few
hundred floating point operations per fetch of a datum are probably
necessary for the AP-120B to perform v1elL A ballpark number for
transfering data on the Unibus, when blocks of lK words are used and
the operating system is UNIX, is 16 microseconds per 16 bit word.
Dr. George Purvis of Battelle Laboratories has estimated that with
the above transfer time a 146 x 146 matrix multiplication (292
floating point operations per fetch) would be speeded up by about a
factor of 10 over the VAX-11/780 time, if the data came from a disk
attached to the VAX. This optimistic number will decrease rapidly,
ho\vever, as the number of floating point operations, per datum
fetched, falls. It cannot be expected that the SCF step of an ab
initio calculation will be speeded up over that of a good
minicomputer. The array processor will be mainly idle waiting for
data.

The integral evaluation step is not easily vectorized because of
the large number of different types of integrals. Nevertheless, the
large scalar speed of the AP-120B could be to effective use
here, but only if a significant fraction of the code could be stored
in the array processor. It would be a hopeless pursuit to try and
manipulate the very large integral code of Gaussian 70 into the
AP-120B. The newer integral programs which use polynomials
(HONDO, for example) could possib be run on an array processor, if
the critical sections of code were isolated and if they could be
made to fit into the 4K program memory of an AP-120B. Even if the
integral evaluation time could be significantly reduced, the time
for the SCF step would still remain and the reduction in execution
time of the overall procedure would not be large. A number of
groups are now evaluating analytical derivatives of the molecular
orbital energy with respect to nuclear motion. In these
calculations, where the SCF step constitutes a much smaller fraction
of the total execution time, an array processor would be quite
effective provided, aga , that integrals (and derivatives of
integrals) could be evaluted in the array processor.

(38)

Whether some of the many methods which include electron
correlation could execute efficiently with the AP-l20B is an open
question. One area where an AP-120B might be useful is with
semi-empirical calculations (CNDO, INDO, MINDO, etc.) on very big
molecules. These calculations do not have as a bottleneck the
problem of generating or manipulating vast numbers of two-electron
integrals. For many of the problems that one would visualize
solving with semi-empirical methods, however, the Fock matrix,
density matrix, etc. would not fit into a 64K main data memory.

None of the immediately above discussion mentions the precision
problem of the AP-120B. While some useful electronic structure
calculations could be performed with only 38 bits, the general
electronic structure calculation could not, particularily, if data
words were chopped to 32 bits (6 decimal figures) by the interface.
Perhaps, ways will be found to put an AP-1208 to effective use 1n
electronic structure calculations but this does not appear to be the
most profitable direction in which to proceed.

The author is not familiar enough with the techniques and
programs of crystallography to judge whether an array processor such
as the AP-120B would be useful to crystallographers. Initial
indications are that it would, but further exploration is required.

A few benchmark-type numbers have already been mentioned in the
text above. It is clear that the AP-120B can be very fast. For
some sparse matrix problemsl6 it has beaten the CDC STAR-100,
out-performed the CDC 6500 (dual 6400's) by 50 to 1, and even come
close to the Cray-1 (on an algorithm which the Cray-1 handles very
badly). The following numbers compare it with the VAX-11/780 for
the standard Whetstone benchmark. This benchmark measures the
number of instructions executed per second for a presumed average
mixture of high-level instructions. These numbers were contributed
by Floating Point Systems through Professor Kent Wilson.

Standard Benchmark

VAX-11/780 without DEC's floating point accelerator
VAX-11/780 with DEC's floating point accelerator
VAX-11/780 with AP-120B and FPS FORTRAN compiler
VAX~-11/780 with AP-120B and hand-coded APAL

711
1100
2580

14,000

These numbers illustrate the AP-120B's possible speed as well as
the expected inefficiency of Floating Point Systems' compiler. A
good descri ion of Cornell's AP-1901 attached to their IBM 370/168
has been publishedlt.,, This paper includes a number of interesting
benchmarks including benchmarks for Monte Carlo code (0.63 times the

(39)

speed of a CDC 7600 and 1.5 times the speed of an IBM 370/168).
Since the performance of the AP-l20B is sensitive to the problem
being solved, the host computer and its operating system, and the
algorithm used and the method of coding it, there is still a need
for more and better benchmarks for chemically significant problems.

Given that it appears an array processor can be appropriately
applied to one's application, a few points still require
discussion. Should it be attached to a university-wide computation
facility, as in the Cornell example, or to a minicomputer dedicated
to the use of a small group? It is the author's feeling that an
array processor will find its best use when dedicated to a small
number of specific problems requiring enormous amounts of computer
time. Such problems are prevalent in computational chemistry.
Provided sufficient manpower can be dedicated to maintaining and
programming the facility, an array processor could extend, by
perhaps an order of magnitude, the complexity of a certain number of
chemically interesting questions which could be attacked by
practical computations.

Attaching an array processor to a university wide resource will
require a substantial commitment on the part of a central computer
center to educating themselves in a new hardware device, maintaining
and writing new system software, and down-playing their existing
computational facilities. In Cornell's case, the Office of Computer
Services has made a substantial commitment to support an array
processor and the specific needs of a small group of physical
scientists. Such a commitment is not likely to be generally
available, nor is the required expertise. Another factor in favor
of the success of the Cornell venture has been the very high cost of
using their IBM 370/168. In many universities, at least small
amounts of time will be available gratis, eliminating much of the
demand for running short jobs on an array processor with its
accompanying extra programming requirements and constraints.

The very large software problems still remain. Chemists have
effectively abandoned programming in assembly language except
perhaps for isolated situations where short critical routines are
made as efficient as possbile. Even then, one normally has backup
FORTRAN versions for portability reasons. Is it advisable for
chemists to expend considerable effort programming a specific array
processor, given a lifetime for the machine of, at most, 5 years?
The obvious answer is to stick to FORTRAN but, as benchmarks have
suggested, this may eliminate many of the speed advantages of an
array processor. The best that can be suggested is that FORTRAN be
used initially and that an effort be made to replace hopefully short
critical sections of code with machine specific programming. It
cannot be expected that someone will produce a super-efficient
FORTRAN compiler in the near future. If a FORTRAN compiler is to be
used with the AP-1208, it is certainly desirable to obtain the
maximum (4K) of program memory. For those with a VAX-11/780, and
data transfer problems, it may be desireable to wait until an
AP-l20B can be directly attached to the SBI rather than use the

Unibus interface, For those whose code will fit completely into an
array processor and who do not have much data to be transferred, a
relatively inexpensive configuration consisting , for example, of a
PDP-11/23 microcomputer and an FPS-100 might be appropriate.

7.0 Array Processor Literature

Unlike the reasonably well defined communication channels of
chemistry, the computer science and engineering literature often
occurs in technical reports and other places difficult to access.
The obvious first source is the manufacturers' brochures and manuals
describing their products. To obtain other than the most
superficial information, it is necessary to obtain the detailed
manuals intended for actual users. The most relevant Floating Point
Systems manuals are the "Processor Handbook" (a first introduction),
the "Program Development Software Manual" (describing the use and
syntax of APAL, APLINK, APSH1 and APDBUG), the "Programmer 1 s
Reference Manual, Part I" (detailing the architecture and the way it
is microprogrammed), the "Programmer's Reference Manual, Part II"
(detailed list and description of each machine instruction), the "AP
Math Library Manual, Volume 1" (introduction to the math library and
its use) and the "AP Math Library Manual, Volume 2" (detailed
description, except for actual code, of each math library routine
and its execution time). In addition, manuals are available
describing the lOP or PlOP peripheral processors and individual host
interfaces, and each of the software modules, including the FORTRAN
compiler.

Apart from a few uninformative promotional pamplets there is not
yet any detailed information on CSPI's MAP-6400. A brief
introduction to the current models is Document S-02, "An
Introduction to the MAP Series Models 100, 200 and 300" Detailed
information is contained in the "Macro Arithmetic Processor terns
(MAP-100/200/300) Programmer's Reference Manual" and "Simple
Notation for Array Processing, Version II (Snap-II) Reference
Manual. 11 There are also a large number of other smaller manuals
describing particular hardware or software aspects of the MAP serles.

Datawest provides a reasonably informative small manual,
"Data\vest Series 480 Array Processor," to interested persons. The
Eclipse Array processor is described in Data General's, "Eclipse
AP/130 Array Processor Programmer's Reference," and "Array Processor
Soft~;vare (APS) User's Manual."

One of the best first introductions to array processors is a
short article in Science by Arthur Robinsonl7. He gives the names
and addresses of the principal array processor vendors.

Articles describing array processors and written by
representatives of the various vendors periodically appear in
various trade magazines18-21, These are almost always prompted by
promotional considerations and cannot be taken as critical
evaluations. Reference 18, however, does give the basic
characteristics (word size, price, etc.) of fifteen different array

(41)

processors. One article22, a well knovm architect, compares a
few attached scientific processors but, unfortunate , does not
contain a great deal of useful information. In the article and 1n a
table, he compares the AP·>, 120B with the Burroughs 1 BSP without
noting the 12 million dollar price difference. One last trade
magazine article23, by a disinterested author, makes a reasonable
comparison between the Floating Point Systems' AP-120B and CSPI's
MAP~300, A short note by the present auth , contained in the
report of an NRCC workshop, does not contain much information but
does have a short bibliography of papers on array processors,
multiprocessors, and parallel algorithms. (Note that Datawest no
longer produces the MATP~400 array processor and the three technical
memorandum from Computer Services, Cornell that are cited have been
replaced by reference 25.)

As mentioned earlier, the Electric Power Research Institute
(EPRI) is involved in evaluat array processors and parallel
architectures, mainly for the solution of sparse linear equations.
Three EPRI technical reports 16,26, 27 will be of interest to those
concerned with array processing, Unfortunate , some of these and
other28,29 interesting evaluations of array processors, including
evaluations of the AP~l20B, are for applications which are difficult
to directly relate to those of computational chemistry.

To the disadvantage of a report like this, there is little yet
published by those physicists and chemists who have explicit
practical experience with an array processor. Professor Kent Wilson
has described his system and related topics two interesting
papers30,31, but he has not yet rel , in print, a great deal of
specific information on his group's use of the AP-120B. The best
quantitative descri ion on the use of the AP~·l20B in chemically
related problems is a paper from Cornelll4, already noted. A good
description of the UCLA CHI facili and its use in plasma
simulation is given in reference 32, A paper describing experience
with the Prime 350-AP120B system at Cornell has been tted to
the new Journal of Computational Chemis 33

Floating Point tems publishes the papers presented at its
annual Users Group meeting, 09784 and 1979). These contain
useful information for those having an AP-l20B or those
contemplating getting one. D. Bergmark's description of the Cornell
FORTRAN compiler is contained in the 1978 report as is a preliminary
description of Floating Point Systems' FORTRAN compiler. At the
time of writing, the 1979 report was not yet available.

8.0 Role of the NRCC in Chemical Processing

By sponsoring this report and the meeting outlined 1n the
appendix, the NRCC has al played a role in evaluating array
processors. That is, it has attempted to inform the chemical
community about array processors and it has itiated a dia.logue
among interested persons on the subject of the present and possible
future use of array processors in computational chemis What

(42)

future role, if any, should it play with regard to array
processors? As part of its informational function should it
continue to keep chemists informed on specific commercial products,
not only array processors but minicomputers, graphics systems,
microcomputers, etc. Should it, attempt to meaningfully benchmark
array processors? In addition to the large number of programs it
now makes avaiable to chemists, should it either acquire externally,
or attempt to develop in-house, software specific to particular
machines such as the Floating Point Systems' AP-120B? Finally,
should it at to lead in the use of array processors for
chemical computation by ing one? These and many other
questions concerning a specific role for the NRCC in the field of
chemical computation with array processors could be asked. An
attempt will be made to answer at least a few of these in the next
section.

9.0 Recommendations

By the nature of this report it seems appropriate to make some
specific recommendations. Many of these are implicit in the
discussion above but it is best to make them explicit.

1: Those scient ts with extreme computational requirements who
are solving algorithms that do not make extensive use of mass
storage and which have short, compute~"bound code, should
serious consider an array processor as a cost-effective
solution to the problems, provided the floating point
precision is known to be adequate for the application.

Comment: Anyone considering acquir an array processor,
however, should be fully cognizant of the software headaches he
may be acqu ing. The hidden cost of an array processor will be
1n software development.

2: The standard ab initio molecular orbital calculations of
quantum chemistry~re not obvious candidates for any existing
array processor.

Comment: With sufficient oration there will probably be
ways of putting a current array processor to use in electronic
structure calculations, but an array processor is not a yet a
tailor-made solution to the problems of quantum chemistry. Of
the many methods for calculating correlated wavefunctions, some
might use an array processor effectively, but extensive

oration of the applicability of a particular architecture to
a particular application is necessary prior to a large
hardware and software investment. For a few well-defined

lems, irical molecular orbital calculations might
use an array processor successful The major problem in
apply an array processor to electronic structure calculations

(43)

is the lack of high precision, limited main memory, and the
limited rate for transfers of data between host and array
processor. In these and in other applications, a thorough study
must be made of the explicit problem to be solved and its match
with a particular architecture.

3: The NRCC should continue to explore the attached scientific
processor as a cost~effective solution to many problems of
computational chemistry.

it should obtain from the manufacturer copies of their
simulators and implement them on the NRCC's VAX-11/780.

it should establish contacts with all manufacturers of
array processors and inform them of the computational needs
of the chemistry comm;tmi ty.

it should maintain contact with existing users of array
processors and keep abreast of developments ln the field.

it should explore common interests with the Electric
Power Research Institute and other potentially large users
of array processors, with the possibility of defining a
minimal set of machine requirements.

it should suggest to manufacturers that, as well as
signal processing routines, their libraries should contain
matrix diagonalization routines and others of similar
importance to chemical computation.

it should suggest to manufacturers that FORTRAN compiler
lS of first importance to the scientific community.

Comment: The simulators can apparently be obtained by NRCC.
Assuming no legal problems, these would allow interested
chemists an opportunity to investigate applicability of their
problems to an array processor prior to purchasing one. There
is a definite market, although perhaps of ill-defined size,
among chemists and physicists for cost~effective processing
power. Advancing technology makes it far more possible to
satisfy these needs than in the past. Physical scientists with
NRCC as the prime representative should provide input to
manufacturers of the needs of the community in as many different
ways as possible.

4: At some future time the NRCC should sponsor a workshop on a
topic related to "Chemistry and Computer Hardware Advances".

Comment: This workshop would focus on hardware aspects not only
of array processors but also of minicomputers, graphics systems,

(44)

microprocessors, and communications. A number of things are
happening in the hardware area which can be expected to have an
impact on chemistry. A workshop is needed to explore the
directions these advances will take in the next few years so
that chemists can take best advantage of them. The NRCC has
focused mainly on software but it should begin to explore the
hardware area as well. The optimum architecture may be very
different for different applications.

5: The NRCC should explore with Floating Point Systems, or some
other manufacturer, the possiblity of becoming a test site for
one of the forthcoming, more general purpose, higher precision
array processors.

Comment: The NRCC should consider acquiring an array processor
for attachment to their VAX-11/780. Rather than settle for a
lower precision machine they should wait for a 64~bit machine.
Because of the visibility of the NRCC in the scientific
community and because it is the source of a vast amount of
chemical software used throughout the country and because it
provides the major medium of communication among computational
chemists, it might be expected that a profitable arrangement
could be made with one of the array processor vendors.

(45)

Acknowledgements

The author is grateful to the many people, far too many to
acknowledge explicitly, who have contributed information or helped
in the preparation of this report. Special thanks goes to the
speakers (listed in the appendix) of the July 20-21, 1979 meeting at
which many of the issues discussed here were raised. Finally, the
author acknowledges the very gracious hospitality received from the
staff of the NRCC during the period in which this report was
prepared and written. This report was supported by the National
Resource for Computation in Chemistry under a grant from the
National Science Foundation and the Basic Energy Science Division of
the U.S. Department of Energy (Contract No. W-7405-ENG-48). Figures
6 and 7 are reproduced with permission from Floating Point Systems,
Inc. and CSP, Inc., respectively.

(46)

References

1. "Needs and Opportunities for the National Resource for
Computation in Chemistry (NRCC)", Report of a Workshop, National
Academy of Sciences, 1976. Available from the Office of
Chemistry and Chemical Technology, National Research Council,
2101 Constitution Avenue, Washington, DC 20418.

2. A reasonable starting point for chemists interested 1n computer
architecture is Introduction to Computer Architecture, Science
Research Associates, Chicago, l97 5, H. S.- Stone, ed.

3. S. Waser, "State-of-the-Art in High Speed Arithmetic Integrated
Circuits," Computer Design, July 1978, pp. 68-75.

4. E. Stritter and T. Gunter, 11A Microprocessor Architecture for a
Changing World: The Motorola 68000, 11 Computer, 12, 43 (1979).

5. D. Queyssac, "Projecting VLSI's Impact on Microprocessors, 11 IEEE
Spectrum, lt• 38 (1979).

6. E, Anacker, "Computing at 4 Degrees Kelvin," IEEE Spectrum, lt•
26 (1979).

7, N.R. Lincoln, "It's Not Really as Much Fun Building a
Supercomputer as it is Simply Inventing One, 11 in High Speed
Computer and Algorithm Organization, Academic Pre;s:-New York
1977, D,J, Kuck, D. H. Lawrie and A. H. Sameh, eds.

8. M. Flynn, IEEE Trans. Computers, C-21, 948 (1972).

9, N.S. Ostlund, "Chemistry, Computers, and Microelectronics:
Present and Future Prospects, 11 Int. J. Quantum Chem,, in press,

10. G.H. Barnes, R. M. Brown, M. Kato, D. J, Kuck, D. L. Slotnick,
and R. A. Stokes, IEEE Trans. Computers, C-17, 746 (1968).

11. Cray-1 Hardware Reference Manual 2240004, Gray Research, Inc.,
Mendota Heights, Minnesota 55120.

12. A.K. Agrawala and T.G. Rauscher, Foundations of
Microprogramming, Academic Press, New York, 1976

13. M.J. Flynn, "Interpretation, Microprogramming, and the Control
of a Computer," in Introduction to Computer Architecture,
Science Research Associates, H. S~. ~Stone, ed,.

(47)

14. G. Chester, R. Gann, R. Gallagher, and A. Gr~m~son, "Computer
Simulations of the Melting and Freezing of Simple Systems Using
an Array Processor," in Computer Modeling of Matter, American
Chemical Society, Symposium Serie.s 86, Washington DC, '1978, P.
Lykos, ed.

15. J.T. Coonen, "Specifications for a Proposed Standard for
Floating Point Arithmetic," Memorandum UCB/ERL M78/72,
University of California at Berkeley, 1978.

16. D.E. Barry, c. Pottle, and K.A. Wirgau, "Technology Assessment
Study of Near Term Computer Capabilities and Their Impact on
Power Flow and Stability Simulation Programs", Tech. Report
EL-946, 1978, Electric Power Research Institute, 3412 Hillview
Avenue, Palo Alto, CA 94304.

17. A.L. Robinson, "Array Processors: Maxi Number Crunching for a
Mini Price," Science, 203, 156 (1979),

18. R.A. Gaspe, "Array Processors", Mini-Micro Systems, July 1978,
pp. 54-63.

19. C.N. Winningstad, "Scientific Computing on a Budget,"
Datamation, October 1978, pp. 159-173.

20. A.S. Hargulies, nArray Processing Eases High-Speed Vector
Computation," Digital Design, June 1978, pp. 52-55.

21. W.R. Wittmayer, "Array Processor Provides High Throughput
Rates," Computer Design, Harch 1978, pp. 93-100.

22. K.J. Thurber, "Parallel Processor Architectures - Part 2:
Special Purpose Systems," Computer Design, February 1979, pp
103-114.

23. S.P. Hufnagel, "Comparison of Selected Array Processor
Architectures," Computer Design, March 1979, pp. 151-158.

24. N.S. Ostlund, "Array Processors and Hultiprocessors," in Report
of a Hinicomputer Workshop, 1978, National Resource for
Computation in Chemistry, Lawrence Berkeley Laboratory,
Berkeley, CA 94720

25. "Array Processor User's Guide," Cornell Computer Services,
Ithaca NY 14850

26. P.M. Anderson, "Exploring Applications of Parallel Processing to
Power System Analysis Problems," Tech. Report EL-566-SR, 1977,
Electric Power Research Institute, 3412 Hillview Avenue, Palo
Alto, CA 94304.

(48)

27. H. E. Brown, "Parallel Processor and Pipeline Computers: An
Annotated Bibliography," Tech. Report EL~764~SR, 197 8, Electric
Power Research Institute, 3412 Hillview Avenue, Palo Alto, CA
94304.

28. R. S. Bucy and K. D. Senne, "New Frontiers in Nonlinear
Filtering," Tech. Note 1978-16, Lincoln Laboratory, MIT,
Lexington, MA 02173.

29. W.J. Karplus, "Peripheral Processors for High-Speed Simulation,"
Simulation,~' 143, (1977).

30. K.R. Wilson, "Many-Atom Molecular Dynamics with an Array
Processor," in Minicomputers and Large Scale Computation,
American Chemical Society Symposium Series 57, Washington DC,
1977, P. Lykos, ed.

31. K.R. Wilson, "Multiprocessor Molecualr Mechanics," in Computer
Networking and Chemistry, American Chemical Society Symposium
Series 19, Washington DC, 1975, P. Lykos, ed.

32. J.M. Dawson, R.W. Huff, and c. Wu, "Plasma Simulation on the
UCLA CHI Computer System", Tech. Report PPG~334, Center for
Plasma Physics and Fusion Engineering, UCLA, Los Angeles, CA
90024.

33. C. Pottle, M. Pottle, R. Tottle, R. Kinch, and H.A. Scheraga,
"Conformational Analysis of Proteins, Algorithms and Dtata
Structures for Array Processing," submitted to J. Computational
Chern.

33. Record of 1978 Users Group Meeting, 78 UG 2/FPS, Floating Point
Systems, Inc., P.O. Box 23489, Portland, OR 97223.

(49)

APPENDIX

ARRAY PROCESSORS FOR CHEMICAL COMPUTATIONS

JULY 20-21, 1979

LAWRENCE BERKELEY LABORATORY

(50)

National Resource for Computation in Chemistry

Session I.

8:30-8:45

8:45-9:00

9:00-10:00

10:00-10:15

10:15-11:15

Array Processors for Chemical Computations

Lawrence Berkeley Laboratory
July 20-21, 1979

AGENDA

Friday, July 20, 1979, 8:30am-12:15pm

"Opening Remarks"
William A. Lester, Jr.
Director, National Resource for Computation
in Chemistry

"Purpose of the Meeting"
Neil S. Ostlund
Department of Computer Science,
Carnegie-Mellon University

"How an Attached Scientific Processor Can be
Used in Electronic Structure Calculations:
Why We Don 1 t Have One (Yet). 11

George Purvis
Battelle Columbus Laboratory

Break

"Holecular Dynamics with an Array Processor"
Kent R, Wilson
Department of Chemistry, University of
California, San Diego

(51)

11:15-12:15

12:15-1:45

Session II.

1:45-2:45

2:45-3:45

3:35-4:00

4:00-5:00

5:00

Se s s ion II I.

9:00-10:15

"Algorithms and Data Structures for Array
Processing in the Conformational Analysis for
Proteins 11

Christopher Pottle
School of Electrical Engineering, Cornell
University

Lunch

Friday, July 20, 1979, 1.45-5:00pm

"Array Processors and Their Applications"
Carl Haberland
Floating Point Systems, Inc.

"Program Preparation for an Array Processor"
Donna Bergmark
Computer Services, Cornell University

Break

"The UCLA CHI (Culler/Harrison, Inc.)
Computer System and its Application to
Particle Simulation"
Robert Huff
Department of Physics, University of
California, Los Angeles

Adjourn

Saturday, July 21, 1979, 9:00-11:45am

ROUND-TABLE DISCUSSIONS

"The Future of Array Processors 1.n Chemical
Computations"
Chaired by Neil S. Ostlund

(52)

10:15-10:30

10:30-11:45

Break

"What Role Should the NRCC Have Regarding the
Use of Array Processors in Chemistry?"
Chaired by William A. Lester, Jr.

End of Meeting

(53)

National Resource for Computation in Chemistry

Array Processors for Chemical Computation

Possible Topics of Discussion:

1. What Chemical Problems Are Amenable To Array Processing?

What are the time consuming steps and can one efficiently
use an array processor in the calculations of chemical
kinetics, crystallography, macromolecular science, physical
organic chemistry, quantum chemistry, and statistical
mechanics?

Are our problems vectorizable and best done a vector
machine or ~s an asynchronous multiprocessor better?

Can one solve electronic structure problems (data intensive
rather than computationally intensive, unlike Monte Carlo)
with an array processor?

2. What Are The Characteristics Of Current Models?

Is the AP-120B an array processor or a scalar processor?

Will the 64-bit CSPI machine compete with FPS?

Can one neglect other machines on the market?

How does one stimulate competition (which is likely to
benefit us) in this market?

3. What will (Or Should) Be The Characteristics Of Future Models?

In what direction is the industry going?

Can scientists decide on a common set of desirable features?

Can we have any impact on manufacturers with regard to
hardware or software?

Should an AP be attached or integrated into mini?

(54)

4. Hmv Cost-Effective Are Array Processors Really?

Will supermini or minimal mini + AP cost less?

What ~s the cost of software development?

What ~s half~life of architecture?

Will array processors enjoy the cost-effectiveness of LSI
and VLSI?

5, Can An Ordinary Chemist Use An Array Processor Successfully?

Is an organic chemist getting into a can of worms?

How much computer science expertise is required?

How long will it take to develop software?

Should computational chemists become computer scientists?

6. Supercomputer, Mainframe, Mini Or Array Processor?

How should we compute in the next 2 years? 5 years? 10
years?

What about micros?

Will Array Processors replace supercomputers?

Which mode of computing is best, most cost-effective, or
has the most desireable user interface?

7. What Configurations (Host, Memory, Dists, Etc,) Are Reguired Or
Optimum?

wbat can one do in L}K?

Which host is best--does it make a difference?

Can one use a micro (e.g. LSI-11/23) as host?

When does one need a disk? Which one?

Table memory--usefulness, custom ROM, RAM?

Speed of main memory? Size?

Unibus or SBI on VAX?

(55)

8. What Does One Do About Software?

Is current software good, mediocre or atrocious?

Can a FORTRAN Compiler be efficient enough?

How difficult are they to program?

Should chemists abandon portable, high-level software for
efficient, but costly, disposable and tedious low-level
software?

Will manufacturers be developing adequate software?

Should it be the job of the NRCC to develop software for
array processors?

9. How Much Precision Do We Really Need?

Which areas of chemistry need which precision?

Is a 32-bit word effectively useless?

Is only 48- to 64-bit word worth considering?

Ways to get around truncation of 38-bit to 32-bits ~n

AP-120B?

10. How Reliable Are Array Processors? What Does One Do About
Maintenance?

Repair record?

How good are diagnostic programs?

Can local expertise keep it running?

What kind of maintenance agreement are available or optimum?

(56)

11. Dedicated Or General Purpose?

Attach to mainframe (e.g., IBM 370) or mini (e.g. VAX)?

Shared by campus, department, research group or individual?

Stand-alone or time-shared?

What are optimum characteristics of operating system?

12. How Does One Obtain benchmarks?

Where are definitive numbers or how does one get them?

How bad, really, is the overhead (in FORTRAN calls, in
APEX, ~n host operating system, in actual DMA transfers, ~n

AP)?

How long must vectors be to make use of an array processor?

Will manufacturers readily perform benchmarks for us?

Should the NRCC set about obtaining benchmarks?

What are the relevant benchmarks?

13. Should NRCC Attempt To Acquire An Array Processor?

Why?

Which one?

In-house or central facility?

Where will software come from--manufacturers, NRCC,
external users, owners?

(57)

Participants of Array Processor
Meeting

Dr. Hans Andersen
Department of Chemistry
Stanford University
Stanford, CA

Dr. Donna Bergmark
Computer Services
G-24 Uris Hall
Cornell University
Ithaca, NY 14850

Dr. David Ceperley
National Resource for
Computation in Chemistry
Berkeley, CA 94720

Dr. Michel Dupuis
National Resource for
Computation in Chemistry
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Dr. Stephen Elbert
Ames Laboratory, USDOE
Iowa State Univeristy
Ames, IA 50010

Mr. Carl Haverland
Floating Point Systems, Inc.
3601 South Murray Blvd.
Beaverton, OR 97005

Dr. Stan Hagstrom
National Resource for
Computation in Chemistry
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Dr. Robert Huff
Department of Physics
Los Angeles
Los Angeles, CA 90024

(58)

Mr. Robert Norin
Floating Point Systems, Inc.
3601 South Murray Blvd.
Beaverton, OR 97005

Dr. Arthur Olson
National Resource for
Computation in Chemistry
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Dr. Neil Ostlund
Dept. of Computer Science
Carnegie-Mellon University
Pittsburgh, PA 15213

Professor Chris Pottle
410 Phillips Hall
School of Electrical Eng.
Cornell University
Ithaca, NY 14853

Dr. George Purvis
Batelle Columbus Lab.
505 King St.
Columbus, OH 43201

Dr. Clemens C.J. Roothaan
Univeristy of Chicago
Division of Chemistry
5735 South Ellis Avenue
Chicago, IL 60625

Mr. Robert Schuhmamn
Director of Marketing and Sales
Floating Point Systems, Inc.
3601 South Murray Blvd.
Beaverton, OR 97005

Dr. Dale Spangler
National Resource for
Computation in Chemistry
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Dr. William A. Lester, Jr.
Director, National Resource
for Computation in Chemis
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Dr. John Wendoloski
National Resource for
Computation in Chemistry
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Hr. Howard White
Computer Center
Lawrence Berkeley Laboratory
Berkeley, CA 94720

Professor Kent Wilson
Department of Chemistry
University of California, San Diego
La Jolla, CA 92037

Dr. Nicholas Winter
Lawrence Livermore Laboratory
Bldg, 3725, Rm. 126
Livermore, CA 94550

(59)

Dr. Lowell Thomas
National Resource for
Computation in Chemistry
Lawrence Berkeley Laboratory
Berkeley, CA 94720

